Arterial concentration of 99mTc-sestamibi at rest, during peak exercise and after dipyridamole infusion

2004 ◽  
Vol 24 (6) ◽  
pp. 394-397 ◽  
Author(s):  
Niels Peter Ronnow Sand ◽  
Palle Juelsgaard ◽  
Karin Rasmussen ◽  
Christian Flo ◽  
Leif Thuesen ◽  
...  
1996 ◽  
Vol 45 (1) ◽  
pp. 122-122
Author(s):  
Assumpta Caixas ◽  
Lluis Berna ◽  
Manual Puig-Domingo

2005 ◽  
Vol 11 ◽  
pp. 50
Author(s):  
Peter Tebben ◽  
Stephen F. Hodgson ◽  
Bart L. Clarke ◽  
Brian P. Mullan ◽  
William P. Cooney ◽  
...  

1997 ◽  
Vol 36 (08) ◽  
pp. 259-264
Author(s):  
N. Topuzović

Summary Aim: The purpose of this study was to investigate the changes in blood activity during rest, exercise and recovery, and to assess its influence on left ventricular (LV) volume determination using the count-based method requiring blood sampling. Methods: Forty-four patients underwent rest-stress radionuclide ventriculography; Tc-99m-human serum albumin was used in 13 patients (Group I), red blood cells was labeled using Tc-99m in 17 patients (Group II) in vivo, and in 14 patients (Group III) by modified in vivo/in vitro method. LV volumes were determined by a count-based method using corrected count rate in blood samples obtained during rest, peak exercise and after recovery. Results: In group I at stress, the blood activity decreased by 12.6 ± 5.4%, p <0.05, as compared to the rest level, and increased by 25.1 ± 6.4%, p <0.001, and 12.8 ± 4.5%, p <0.05, above the resting level in group II and III, respectively. This had profound effects on LV volume determinations if only one rest blood aliquot was used: during exercise, the LV volumes significantly decreased by 22.1 ± 9.6%, p <0.05, in group I, whereas in groups II and III it was significantly overestimated by 32.1 ± 10.3%, p <0.001, and 10.7 ± 6.4%, p <0.05, respectively. The changes in blood activity between stress and recovery were not significantly different for any of the groups. Conclusion: The use of only a single blood sample as volume aliquot at rest in rest-stress studies leads to erroneous estimation of cardiac volumes due to significant changes in blood radioactivity during exercise and recovery.


Author(s):  
Margarida Victor ◽  
Ana Goncalves Ferreira ◽  
Susana Carmona ◽  
Henrique Vara Luiz ◽  
Maria Carlos Cordeiro ◽  
...  
Keyword(s):  

2000 ◽  
Vol 55 (6) ◽  
pp. 335-339 ◽  
Author(s):  
Mehmet ÜLGEN ◽  
Aziz KARADEDE ◽  
Sait ALAN ◽  
A. Vahip TEMAMOĞULARI ◽  
Aziz KARABULUT ◽  
...  

2021 ◽  
Vol 35 (5) ◽  
pp. 569-579
Author(s):  
Malik E. Juweid ◽  
Abdullah Alhouri ◽  
Bayan Baniissa ◽  
Dalia Rimawi ◽  
Ziad F. A-Risheq ◽  
...  

Respiration ◽  
2021 ◽  
pp. 369-377
Author(s):  
Michael Westhoff ◽  
Patric Litterst ◽  
Ralf Ewert

Background: Combined pulmonary fibrosis and emphysema (CPFE) is a distinct entity among fibrosing lung diseases with a high risk for lung cancer and pulmonary hypertension (PH). Notably, concomitant PH was identified as a negative prognostic indicator that could help with early diagnosis to provide important information regarding prognosis. Objectives: The current study aimed to determine whether cardiopulmonary exercise testing (CPET) can be helpful in differentiating patients having CPFE with and without PH. Methods: Patients diagnosed with CPFE in 2 German cities (Hemer and Greifswald) over a period of 10 years were included herein. CPET parameters, such as peak oxygen uptake (peak VO2), functional dead space ventilation (VDf/VT), alveolar-arterial oxygen difference (AaDO2), arterial-end-tidal CO2 difference [P(a-ET)CO2] at peak exercise, and the minute ventilation-carbon dioxide production relationship (VE/VCO2 slope), were compared between patients with and without PH. Results: A total of 41 patients with CPET (22 with PH, 19 without PH) were analyzed. Right heart catheterization was performed in 15 of 41 patients without clinically relevant complications. Significant differences in peak VO2 (861 ± 190 vs. 1,397 ± 439 mL), VO2/kg body weight/min (10.8 ± 2.6 vs. 17.4 ± 5.2 mL), peak AaDO2 (72.3 ± 7.3 vs. 46.3 ± 14.2 mm Hg), VE/VCO2 slope (70.1 ± 31.5 vs. 39.6 ± 9.6), and peak P(a-ET)tCO2 (13.9 ± 3.5 vs. 8.1 ± 3.6 mm Hg) were observed between patients with and without PH (p < 0.001). Patients with PH had significantly higher VDf/VT at rest, VT1, and at peak exercise (65.6 ± 16.8% vs. 47.2 ± 11.6%; p < 0.001) than those without PH. A cutoff value of 44 for VE/VCO2 slope had a sensitivity and specificity of 94.7 and 72.7%, while a cutoff value of 11 mm Hg for P(a-ET)CO2 in combination with peak AaDO2 >60 mm Hg had a specificity and sensitivity of 95.5 and 84.2%, respectively. Combining peak AaDO2 >60 mm Hg with peak VO2/body weight/min <16.5 mL/kg/min provided a sensitivity and specificity of 100 and 95.5%, respectively. Conclusion: This study provided initial data on CPET among patients having CPFE with and without PH. CPET can help noninvasively detect PH and identify patients at risk. AaDO2 at peak exercise, VE/VCO2 slope, peak P(a-ET)CO2, and peak VO2 were parameters that had high sensitivity and, when combined, high specificity.


Diabetologia ◽  
1976 ◽  
Vol 12 (6) ◽  
pp. 589-592 ◽  
Author(s):  
G. Riccardi ◽  
D. Heaf ◽  
L. Kaijser ◽  
B. Eklund ◽  
L. A. Carlson

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fiona Li ◽  
Justin W. Hicks ◽  
Lihai Yu ◽  
Lise Desjardin ◽  
Laura Morrison ◽  
...  

Abstract Background In molecular imaging with dynamic PET, the binding and dissociation of a targeted tracer is characterized by kinetics modeling which requires the arterial concentration of the tracer to be measured accurately. Once in the body the radiolabeled parent tracer may be subjected to hydrolysis, demethylation/dealkylation and other biochemical processes, resulting in the production and accumulation of different metabolites in blood which can be labeled with the same PET radionuclide as the parent. Since these radio-metabolites cannot be distinguished by PET scanning from the parent tracer, their contribution to the arterial concentration curve has to be removed for the accurate estimation of kinetic parameters from kinetic analysis of dynamic PET. High-performance liquid chromatography has been used to separate and measure radio-metabolites in blood plasma; however, the method is labor intensive and remains a challenge to implement for each individual patient. The purpose of this study is to develop an alternate technique based on thin layer chromatography (TLC) and a sensitive commercial autoradiography system (Beaver, Ai4R, Nantes, France) to measure radio-metabolites in blood plasma of two targeted tracers—[18F]FAZA and [18F]FEPPA, for imaging hypoxia and inflammation, respectively. Results Radioactivity as low as 17 Bq in 2 µL of pig’s plasma can be detected on the TLC plate using autoradiography. Peaks corresponding to the parent tracer and radio-metabolites could be distinguished in the line profile through each sample (n = 8) in the autoradiographic image. Significant intersubject and intra-subject variability in radio-metabolites production could be observed with both tracers. For [18F]FEPPA, 50% of plasma activity was from radio-metabolites as early as 5-min post injection, while for [18F]FAZA, significant metabolites did not appear until 50-min post. Simulation study investigating the effect of radio-metabolite in the estimation of kinetic parameters indicated that 32–400% parameter error can result without radio-metabolites correction. Conclusion TLC coupled with autoradiography is a good alternative to high-performance liquid chromatography for radio-metabolite correction. The advantages of requiring only small blood samples (~ 100 μL) and of analyzing multiple samples simultaneously, make the method suitable for individual dynamic PET studies.


Sign in / Sign up

Export Citation Format

Share Document