scholarly journals Interleukin-3 in Cooperation with Transforming Growth Factor β Induces Granulocyte Macrophage Colony Stimulating Factor Independent Differentiation of Human CD34+ Hematopoietic Progenitor Cells into Dendritic Cells with Features of Langerhans Cells

2003 ◽  
Vol 121 (6) ◽  
pp. 1397-1401 ◽  
Author(s):  
Zia U.A. Mollah ◽  
Setsuya Aiba ◽  
Satoshi Nakagawa ◽  
Masato Mizuashi ◽  
Tomoyuki Ohtani ◽  
...  
Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2239-2247 ◽  
Author(s):  
SE Jacobsen ◽  
JR Keller ◽  
FW Ruscetti ◽  
P Kondaiah ◽  
AB Roberts ◽  
...  

Transforming growth factor-beta (TGF-beta) has potent antiproliferative effects on human hematopoietic progenitor cells. We report here that TGF-beta 1 and -beta 2 also exert bimodal dose-dependent stimulation of granulocyte-macrophage colony-stimulating factor (CSF) and granulocyte- CSF-induced day 7 granulocyte-macrophage colony-forming units. This increase in colony formation was restricted to low doses (0.01 to 1.0 ng/mL) of TGF-beta 1 and was due to increased granulopoiesis, showing that TGF-beta can affect the differentiation as well as the proliferation of hematopoietic progenitors. Furthermore, TGF-beta 3 was found to be a more potent inhibitor of hematopoietic progenitor cells than TGF-beta 1 and -beta 2. In contrast to the bidirectional proliferative effects of TGF-beta 1 and -beta 2, the effects of TGF- beta 3 on human hematopoiesis were only inhibitory, showing for the first time that TGF-beta isoforms differ not only in potencies but also with regard to the nature of the response they elicit.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1504-1514 ◽  
Author(s):  
Caroline A. Evans ◽  
Andrew Pierce ◽  
Sandra A. Winter ◽  
Elaine Spooncer ◽  
Clare M. Heyworth ◽  
...  

Activation of specific cytokine receptors promotes survival and proliferation of hematopoietic progenitor cells but their role in the control of differentiation is unclear. To address this issue, the effects of human interleukin-3 (hIL-3) and human granulocyte-macrophage colony-stimulating factor (hGM-CSF) on hematopoietic development were investigated in hematopoietic progenitor cells. Murine multipotent factor-dependent cell-Paterson (FDCP)-mix cells, which can self-renew or differentiate, were transfected with the genes encoding the unique  and/or shared βc human hIL-3 receptor (hIL-3 R) or hGM-CSF receptor (hGM R) subunits by retroviral gene transfer. Selective activation of hIL-3 R,βc or hGM R,βc transfects by hIL-3 and hGM-CSF promoted self-renewal and myeloid differentiation, respectively, over a range of cytokine (0.1 to 100 ng/mL) concentrations. These qualitatively distinct developmental outcomes were associated with different patterns of protein tyrosine phosphorylation and, thus, differential signaling pathway activation. The cell lines generated provide a model to investigate molecular events underlying self-renewal and differentiation and indicate that the  subunits act in combination with the hβc to govern developmental decisions. The role of the  subunit in conferring specificity was studied by using a chimeric receptor composed of the extracellular hIL-3 R and intracellular hGM R subunit domains. This receptor promoted differentiation in response to hIL-3. Thus, the  subunit cytosolic domain is an essential component in determining cell fate via specific signaling events.


Sign in / Sign up

Export Citation Format

Share Document