Closed Cycle Gas Turbine Nuclear Power Plant for Submarine Propulsion

1995 ◽  
Vol 107 (6) ◽  
pp. 35-41 ◽  
Author(s):  
Michael J. Gouge
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

One major challenge to the accurate development of performance simulation tool for component-based nuclear power plant engine models is the difficulty in accessing component performance maps; hence, researchers or engineers often rely on estimation approach using various scaling techniques. This paper describes a multi-fluid scaling approach used to determine the component characteristics of a closed-cycle gas turbine plant from an existing component map with their design data, which can be applied for different working fluids as may be required in closed-cycle gas turbine operations to adapt data from one component map into a new component map. Each component operation is defined by an appropriate change of state equations which describes its thermodynamic behavior, thus, a consideration of the working fluid properties is of high relevance to the scaling approach. The multi-fluid scaling technique described in this paper was used to develop a computer simulation tool called GT-ACYSS, which can be valuable for analyzing the performance of closed-cycle gas turbine operations with different working fluids. This approach makes it easy to theoretically scale existing map using similar or different working fluids without carrying out a full experimental test or repeating the whole design and development process. The results of selected case studies show a reasonable agreement with available data.


Atomic Energy ◽  
2005 ◽  
Vol 98 (1) ◽  
pp. 21-31 ◽  
Author(s):  
A. V. Vasyaev ◽  
V. F. Golovko ◽  
I. V. Dmitrieva ◽  
N. G. Kodochigov ◽  
N. G. Kuzavkov ◽  
...  

Author(s):  
L. D. Stoughton ◽  
T. V. Sheehan

A nuclear power plant is proposed which combines the advantages of a liquid metal fueled reactor with those inherent in a closed cycle gas turbine. The reactor fuel is a solution of uranium in molten bismuth which allows for unlimited burn-up with continuous fuel make-up and processing. The fuel can either be contained in a graphite core structure or circulated through an external heat exchanger. The cycle working fluid is an inert gas which is heated by the reactor fuel before entering the turbine. A 15 MW closed cycle gas turbine system is shown to illustrate the application of this reactor.


Author(s):  
H. Boonstra ◽  
A. C. Groot ◽  
C. A. Prins

This paper presents the outcome of a study on the feasibility of a nuclear powered High-Speed Pentamaran, initiated by Nigel Gee and Associates and the Delft University of Technology. It explores the competitiveness of a nuclear power plant for the critical characteristics of a marine propulsion plant. Three nuclear reactor types are selected: the Pressurized Water Reactor (PWR), the Pebble-bed and Prismatic-block HTGR. Their characteristics are estimated for a power range from 100 MWth to 1000 MWth in a parametric design, providing a level base for comparison with conventional gas turbine technology. The reactor scaling is based on reference reactors with an emphasis on marine application. This implies that preference is given to passive safety and simplicity, as they are key-factors for a marine power plant. A case study for a 60-knot Pentamaran shows the impact of a nuclear power plant on a ship designed with combustion gas turbine propulsion. The Prismatic-block HTGR is chosen as most suitable because of its low weight compared to the PWR, in spite of the proven technology of a PWR. The Pebble-bed HTGR is considered too voluminous for High-Speed craft. Conservative data and priority to simple systems and high safety leads to an unfavorable high weight of the nuclear plant in competition with the original gas turbine driven Pentamaran. The nuclear powered ship has some clear advantages at high sailing ranges.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

Abstract As demands for clean and sustainable energy renew interests in nuclear power to meet future energy demands, generation IV nuclear reactors are seen as having the potential to provide the improvements required for nuclear power generation. However, for their benefits to be fully realized, it is important to explore the performance of the reactors when coupled to different configurations of closed-cycle gas turbine power conversion systems. The configurations provide variation in performance due to different working fluids over a range of operating pressures and temperatures. The objective of this paper is to undertake analyses at the design and off-design conditions in combination with a recuperated closed-cycle gas turbine and comparing the influence of carbon dioxide and nitrogen as the working fluid in the cycle. The analysis is demonstrated using an in-house tool, which was developed by the authors. The results show that the choice of working fluid controls the range of cycle operating pressures, temperatures, and overall performance of the power plant due to the thermodynamic and heat properties of the fluids. The performance results favored the nitrogen working fluid over CO2 due to the behavior CO2 below its critical conditions. The analyses intend to aid the development of cycles for generation IV nuclear power plants (NPPs) specifically gas-cooled fast reactors (GFRs) and very high-temperature reactors (VHTRs).


Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

With renewed interest in nuclear power to meet the world’s future energy demand, the Generation IV nuclear reactors are the next step in the deployment of nuclear power generation. However, for the potentials of these nuclear reactor designs to be fully realized, its suitability, when coupled with different configurations of closed-cycle gas turbine power conversion systems, have to be explored and performance compared for various possible working fluids over a range of operating pressures and temperatures. The purpose of this paper is to carry out performance analysis at the design and off-design conditions for a Generation IV nuclear-powered reactor in combination with a recuperated closed-cycle gas turbine and comparing the influence of carbon dioxide and nitrogen as working fluid in the cycle. This analysis is demonstrated in GTACYSS; a performance and preliminary design code developed by the authors for closed-cycle gas turbine simulations. The results obtained shows that the choice of working fluid controls the range of cycle operating pressures, temperatures and overall performance of the power plant due to the thermodynamic and heat properties of the fluids. The performance results favored the nitrogen working fluid over CO2 due to the behavior CO2 below its critical conditions.


2011 ◽  
Vol 133 (08) ◽  
pp. 54-59
Author(s):  
Lee S. Langston

This article presents an overview of a pebble bed modular reactor (PBMR) power plant. A PBMR power plant is a gas turbine nuclear power plant that completely eliminates the possibility of a devastating loss-of-coolant accident. In a PBMR power plant, uranium dioxide nuclear fuel, coated with mass diffusion and radioactive fission product containment layers of pyrolytic carbon and silicon carbide, is formed into nuclear poppy seed-sized fuel particles. Some 15,000 of these are embedded in a tennis ball-sized graphite sphere, which is encased in a thin carbon shell, sintered, annealed and machined to a uniformed diameter of 6 cm. The PBMR reactor vessel, 90 ft high and 20 ft wide, is packed with about 450,000 heat-producing nuclear pebbles. Helium gas coolant then flows around and between the pebbles stacked in the reactor vessel, emerging at about 900°F. The Chinese are currently building two pebble reactors that will be used to generate steam for a conventional Rankine cycle.


Author(s):  
N. Gregory ◽  
E. Zollinger

In connection with the HHT-Project, the Swiss Federal Institute for Reactor Research has performed an Optimization Analysis of the HHT-1640 MWth Demonstration Plant with a Closed Cycle Helium Turbine One Loop Concept with Intercooling. This paper gives a description of the analysed plant and the development of the optimization techniques utilized, followed by the presentation of results of both optimization and sensitivity analysis calculations.


Sign in / Sign up

Export Citation Format

Share Document