scholarly journals The impact of lactic acid bacteria on cheese flavor

1990 ◽  
Vol 87 (1-2) ◽  
pp. 131-147 ◽  
Author(s):  
Norman F. Olson
2021 ◽  
pp. 108201322110399
Author(s):  
Jana Štefániková ◽  
Július Árvay ◽  
Simona Kunová ◽  
Przemysław Łukasz Kowalczewski ◽  
Miroslava Kačániová

This paper describes the results of the characterization of a traditional Slovak cheese called “May bryndza” with regard to the profiles of volatile organic compounds and lactic acid bacteria. Samples of “May bryndza“ cheese produced solely from unpasteurized ewe's milk were collected from 4 different Slovak farms, and samples of the cheese produced from a mixture of 2 types of milk (raw ewe's and pasteurized cow's milk) were collected from 3 different Slovak industrial dairies. There were 15 compounds detected and identified by the electronic nose. The impact of the kind of milk and the kind of dairy on the aroma profile of the product was not confirmed by PCA. The compounds with the highest relative contents in samples were acetoin (2.59%–24.55%), acetic acid (6.69%–13.39%), methoxy-phenyl-oxime (4.49%–8.52%), butanoic acid (1.89%–5.67%), and 2,3-butanediol (0.98%–4.08%), which were determined with gas chromatography. A total of 1533 isolates of LAB were obtained from the “May bryndza” cheese samples. Four families, five genera, and 19 species were identified with mass spectrometry, and isolated bacteria, both from the farm and industry dairies were the most frequently found to belong to Lactococcus lactis subsp. lactis.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Federica Giacometti ◽  
Paolo Daminelli ◽  
Laura Fiorentini ◽  
Elena Cosciani-Cunico ◽  
Paola Monastero ◽  
...  

Formaggio di Fossa di Sogliano is a traditional Italian Protected Designation of Origin (PDO) cheese ripened for a minimum of 5 months, with the feature of a ripening of at least 80 to at most 100 days in pits, digged into tuffaceous rocks according to medieval tradition of Italy. In this study, a challenge test using Listeria innocua as a surrogate of Listeria monocytogenes was performed, with the aim of increasing knowledge concerning the impact of the Fossa cheese process, and especially of the traditional ripening process of this PDO, on the behaviour of L. monocytogenes. Pasteurized milk was experimentally inoculated with 4.5 log CFU/mL cocktail by three L. innocua strains, and L. innocua and Mesophilic Lactic Acid Bacteria (LAB) counts as well as the evolution of temperatures, pH and aw values were monitored throughout the manufacturing and ripening processes. Throughout the ripening in maturation room a constant temperature of 8°C was observed reaching a temperature between 10 and 15.5°C during ripening into pit. In the final products data for LAB concentration, pH and aw values were roughly in accordance with literature, even if some differences were, probably due to variability of artisanal cheese productions. The numbers of L. innocua showed a slight decrease but remained stable until the end of ripening in maturation room, whereas a significant reduction of the microorganism was observed in the final product, at the end of the ripening into the pit. The findings give scientific evidence that the process of this PDO prevented the L. innocua growth, allowing us to speculate a similar behaviour of L. monocytogenes. Based on this study, the recommendation to extend as much as possible the ripening into pit (from 80 to 100 days) was provided to food business operators as a risk mitigation strategy to be implemented.


2005 ◽  
Vol 59 (9-10) ◽  
pp. 235-237
Author(s):  
Dragisa Savic ◽  
Natasa Jokovic

The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Louise Bartle ◽  
Krista Sumby ◽  
Joanna Sundstrom ◽  
Vladimir Jiranek

ABSTRACTThe diversity and complexity of wine environments present challenges for predicting success of fermentation. In particular, compatibility between yeast and lactic acid bacteria is affected by chemical and physical parameters that are strain and cultivar specific. This review focuses on the impact of compound production by microbes and physical interactions between microbes that ultimately influence how yeast and bacteria may work together during fermentation. This review also highlights the importance of understanding microbial interactions for yeast-bacteria compatibility in the wine context.


2019 ◽  
Vol 103 (17) ◽  
pp. 6867-6883 ◽  
Author(s):  
Fernanda Fonseca ◽  
Caroline Pénicaud ◽  
E. Elizabeth Tymczyszyn ◽  
Andrea Gómez-Zavaglia ◽  
Stéphanie Passot

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
H. Hadaegh ◽  
S. M. Seyyedain Ardabili ◽  
M. Tajabadi Ebrahimi ◽  
M. Chamani ◽  
R. Azizi Nezhad

The effect of sourdough inoculated with three novel single strains of lactic acid bacteria (LAB) (Lactobacillus casei jQ412732, Lactobacillus plantarum jQ301799, and Lactobacillus brevis IBRC-M10790) as well as mixed strains was evaluated on the quality characteristics of Toast bread. Antifungal properties of sourdoughs due to organic acid production were measured by HPLC, and storability was evaluated by thermal and textural analysis in days 1, 3, and 6. Despite the impact of sourdough concentration on microbial preservation, no significant effect was observed in the case of enthalpy reduction. Mixed LAB strains showed the best results in reducing the enthalpy and hardness of bread as well as better microbial preservation by producing the highest amount of organic acids, justified by sensory panelists. Among single strains, L. casei gave better results in reducing hardness and staling rate of bread. Scanning Electron Microscopy micrographs of bread also showed the differences.


2004 ◽  
Vol 15 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Roland J Siezen ◽  
Frank HJ van Enckevort ◽  
Michiel Kleerebezem ◽  
Bas Teusink

mSphere ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Jose Zaragoza ◽  
Zachary Bendiks ◽  
Charlotte Tyler ◽  
Mary E. Kable ◽  
Thomas R. Williams ◽  
...  

ABSTRACT Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be improved by the deliberate addition of starter culture microbes that accelerate or beneficially modify product outcomes, the impact of either of those microbial additions on community dynamics within the fermentations is not well understood at strain-specific or global scales. Herein, we show how exogenous spoilage yeast or starter lactic acid bacteria confer very different effects on microbial numbers and diversity in olive fermentations. Introduced microbes have long-lasting consequences and result in changes that are apparent even when levels of those inoculants and their major enzymatic activities decline. This work has direct implications for understanding bacterial and fungal invasions of microbial habitats resulting in pivotal changes to community structure and function. In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be improved by the deliberate addition of starter culture microbes that accelerate or beneficially modify product outcomes, the impact of either of those microbial additions on community dynamics within the fermentations is not well understood at strain-specific or global scales. Herein, we show how exogenous spoilage yeast or starter lactic acid bacteria confer very different effects on microbial numbers and diversity in olive fermentations. Introduced microbes have long-lasting consequences and result in changes that are apparent even when levels of those inoculants and their major enzymatic activities decline. This work has direct implications for understanding bacterial and fungal invasions of microbial habitats resulting in pivotal changes to community structure and function.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 939
Author(s):  
Ewa Baranowska-Wójcik ◽  
Klaudia Gustaw ◽  
Dominik Szwajgier ◽  
Patryk Oleszczuk ◽  
Bożena Pawlikowska-Pawlęga ◽  
...  

Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs -nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, it has increasingly been raising controversies as to the presence or absence of its harmful effects on the gastrointestinal microbiota. The complexity and variability of microbiota species present in the human gastrointestinal tract impede the assessment of the impact of food additives on this ecosystem. As unicellular organisms, bacteria are a very convenient research model for investigation of the toxicity of nanoparticles. We examined the effect of TiO2 (three types of food-grade E171 and one TiO2 NPs, 21 nm) on the growth of 17 strains of lactic acid bacteria colonizing the human digestive tract. Each bacterial strain was treated with TiO2 at four concentrations (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the individual strains were caused by the type and concentration of TiO2. It was shown that the growth of a majority of the analyzed strains was decreased by the application of E171 and TiO2 NPs already at the concentration of 150 and 300 mg/L. At the highest dose (600 mg/L) of the nanoparticles, the reactions of the bacteria to the different TiO2 types used in the experiment varied.


Sign in / Sign up

Export Citation Format

Share Document