scholarly journals Immune hierarchy among HIV-1 CD8+T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice

Apmis ◽  
2009 ◽  
Vol 117 (11) ◽  
pp. 849-855 ◽  
Author(s):  
HENRIK N. KLOVERPRIS ◽  
INGRID KARLSSON ◽  
METTE THORN ◽  
SØREN BUUS ◽  
ANDERS FOMSGAARD
2018 ◽  
Author(s):  
Zheng-Rong Tiger Li ◽  
Veronika I. Zarnitsyna ◽  
Anice C. Lowen ◽  
Daniel Weissman ◽  
Katia Koelle ◽  
...  

AbstractThe high-degree conservation of CD8 T cell epitopes of influenza A virus (IAV) may allow T cell-inducing vaccines effective across different strains and subtypes. This conservation is not fully explained by functional constraint, since additional mutation(s) can compensate the replicative fitness loss of IAV escape-variant. Here, we propose three additional mechanisms that contribute to the conservation of CD8 T cell epitopes of IAV. First, influenza-specific CD8 T cells may protect predominantly against severe pathology rather than infection and may only have a modest effect on transmission. Second, polymorphism of human MHC-I gene restricts the advantage of an escape-variant to only a small fraction of human population, who carry the relevant MHC-I alleles. Finally, infection with CD8 T cell-escapevariants may result in compensatory increase in the responses to other epitopes of IAV. A combination of population genetics and epidemiological models is used to examine how the interplay between these mechanisms affects the rate of invasion of IAV escape-variants. We conclude that the invasion of an escape-variant will be very slow with a timescale of decades or longer, even if the escape-variant does not have a replicative fitness loss. Our results suggest T cell-inducing vaccines may not engender the rapid evolution of IAV and serve as a foundation for future modeling works on the long-term effectiveness and impacts of T cell-inducing influenza vaccines. (Word count: 221)ImportanceUniversal influenza vaccines against the conserved epitopes of influenza A virus have been proposed to minimize the burden of seasonal outbreaks and prepare for the pandemics. However, it is not clear to which extent the T cell-inducing vaccines will select for viruses that escape the T cell responses. Our mathematical models suggest how the nature of CD8 T cell protection contributes to the conservation of the CD8 T cell epitopes of influenza A virus. Also, it points out the essential biological parameters and questions that need addressing by future experimental works. (Word count: 91)


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 424 ◽  
Author(s):  
Beatriz Perdiguero ◽  
Suresh C. Raman ◽  
Cristina Sánchez-Corzo ◽  
Carlos Oscar S. Sorzano ◽  
José Ramón Valverde ◽  
...  

An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.


Retrovirology ◽  
2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Henrik N Kløverpris ◽  
David K Cole ◽  
Anna Fuller ◽  
Jonathan Carlson ◽  
Konrad Beck ◽  
...  

2014 ◽  
Vol 177 (3) ◽  
pp. 696-702 ◽  
Author(s):  
P. Piazza ◽  
D. Campbell ◽  
E. Marques ◽  
W. H. Hildebrand ◽  
R. Buchli ◽  
...  

Vaccine ◽  
2004 ◽  
Vol 23 (5) ◽  
pp. 604-614 ◽  
Author(s):  
Catherine Fayolle ◽  
Cécile Bauche ◽  
Daniel Ladant ◽  
Claude Leclerc

2008 ◽  
Vol 82 (18) ◽  
pp. 9293-9298 ◽  
Author(s):  
Jonah B. Sacha ◽  
Matthew R. Reynolds ◽  
Matthew B. Buechler ◽  
Chungwon Chung ◽  
Anna K. Jonas ◽  
...  

ABSTRACT The kinetics of peptide presentation by major histocompatibility complex class I (MHC-I) molecules may contribute to the efficacy of CD8+ T cells. Whether all CD8+ T-cell epitopes from a protein are presented by the same MHC-I molecule with similar kinetics is unknown. Here we show that CD8+ T-cell epitopes derived from SIVmac239 Gag are presented with markedly different kinetics. We demonstrate that this discrepancy in presentation is not related to immunodominance but instead is due to differential requirements for epitope generation. These results illustrate that significant differences in presentation kinetics can exist among CD8+ T-cell epitopes derived from the same viral protein.


PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e19644 ◽  
Author(s):  
Núria Climent ◽  
Susana Guerra ◽  
Felipe García ◽  
Cristina Rovira ◽  
Laia Miralles ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0176418 ◽  
Author(s):  
Nicola Borthwick ◽  
Zhansong Lin ◽  
Tomohiro Akahoshi ◽  
Anuska Llano ◽  
Sandra Silva-Arrieta ◽  
...  

2019 ◽  
Vol 93 (6) ◽  
Author(s):  
Zheng-Rong Tiger Li ◽  
Veronika I. Zarnitsyna ◽  
Anice C. Lowen ◽  
Daniel Weissman ◽  
Katia Koelle ◽  
...  

ABSTRACTThe high degree of conservation of CD8 T cell epitopes of influenza A virus (IAV) may allow for the development of T cell-inducing vaccines that provide protection across different strains and subtypes. This conservation is not fully explained by functional constraint, since an additional mutation(s) can compensate for the replicative fitness loss of IAV escape variants. Here, we propose three additional mechanisms that contribute to the conservation of CD8 T cell epitopes of IAV. First, influenza-specific CD8 T cells may protect predominantly against severe pathology rather than infection and may have only a modest effect on transmission. Second, polymorphism of the human major histocompatibility complex class I (MHC-I) gene restricts the advantage of an escape variant to only a small fraction of the human population who carry the relevant MHC-I alleles. Finally, infection with CD8 T cell escape variants may result in a compensatory increase in the responses to other epitopes of IAV. We use a combination of population genetics and epidemiological models to examine how the interplay between these mechanisms affects the rate of invasion of IAV escape variants. We conclude that for a wide range of biologically reasonable parameters, the invasion of an escape variant virus will be slow, with a timescale of a decade or more. The results suggest T cell-inducing vaccines do not engender the rapid evolution of IAV. Finally, we identify key parameters whose measurement will allow for more accurate quantification of the long-term effectiveness and impact of universal T cell-inducing influenza vaccines.IMPORTANCEUniversal influenza vaccines against the conserved epitopes of influenza A virus have been proposed to minimize the burden of seasonal outbreaks and prepare for the pandemics. However, it is not clear how rapidly T cell-inducing vaccines will select for viruses that escape these T cell responses. Our mathematical models explore the factors that contribute to the conservation of CD8 T cell epitopes and how rapidly the virus will evolve in response to T cell-inducing vaccines. We identify the key biological parameters to be measured and questions that need to be addressed in future studies.


Sign in / Sign up

Export Citation Format

Share Document