Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients

Apmis ◽  
2011 ◽  
Vol 119 (4-5) ◽  
pp. 263-274 ◽  
Author(s):  
BAOLERI LEE ◽  
CHARLOTTE K. SCHJERLING ◽  
NIKOLAI KIRKBY ◽  
NADINE HOFFMANN ◽  
REHANNAH BORUP ◽  
...  
2008 ◽  
Vol 74 (18) ◽  
pp. 5784-5791 ◽  
Author(s):  
Tiffany L. Weir ◽  
Valerie J. Stull ◽  
Dayakar Badri ◽  
Lily A. Trunck ◽  
Herbert P. Schweizer ◽  
...  

ABSTRACT Although Pseudomonas aeruginosa is an opportunistic pathogen that does not often naturally infect alternate hosts, such as plants, the plant-P. aeruginosa model has become a widely recognized system for identifying new virulence determinants and studying the pathogenesis of the organism. Here, we examine how both host factors and P. aeruginosa PAO1 gene expression are affected in planta after infiltration into incompatible and compatible cultivars of tobacco (Nicotiana tabacum L.). N. tabacum has a resistance gene (N) against tobacco mosaic virus, and although resistance to PAO1 infection is correlated with the presence of a dominant N gene, our data suggest that it is not a factor in resistance against PAO1. We did observe that the resistant tobacco cultivar had higher basal levels of salicylic acid and a stronger salicylic acid response upon infiltration of PAO1. Salicylic acid acts as a signal to activate defense responses in plants, limiting the spread of the pathogen and preventing access to nutrients. It has also been shown to have direct virulence-modulating effects on P. aeruginosa. We also examined host effects on the pathogen by analyzing global gene expression profiles of bacteria removed from the intracellular fluid of the two plant hosts. We discovered that the availability of micronutrients, particularly sulfate and phosphates, is important for in planta pathogenesis and that the amounts of these nutrients made available to the bacteria may in turn have an effect on virulence gene expression. Indeed, there are several reports suggesting that P. aeruginosa virulence is influenced in mammalian hosts by the availability of micronutrients, such as iron and nitrogen, and by levels of O2.


2004 ◽  
Vol 72 (9) ◽  
pp. 5433-5438 ◽  
Author(s):  
Anders Frisk ◽  
Jill R. Schurr ◽  
Guoshun Wang ◽  
Donna C. Bertucci ◽  
Luis Marrero ◽  
...  

ABSTRACT The transcriptional profile of Pseudomonas aeruginosa after interactions with primary normal human airway epithelial cells was determined using Affymetrix GeneChip technology. Gene expression profiles indicated that various genes involved in phosphate acquisition and iron scavenging were differentially regulated.


2009 ◽  
Vol 71 (5) ◽  
pp. 1177-1189 ◽  
Author(s):  
Christian U. Riedel ◽  
Ian R. Monk ◽  
Pat G. Casey ◽  
Mark S. Waidmann ◽  
Cormac G. M. Gahan ◽  
...  

2003 ◽  
Vol 185 (3) ◽  
pp. 1071-1081 ◽  
Author(s):  
Aaron M. Firoved ◽  
Vojo Deretic

ABSTRACT Pseudomonas aeruginosa is the dominant pathogen causing chronic respiratory infections in cystic fibrosis (CF). After an initial phase characterized by intermittent infections, a chronic colonization is established in CF upon the conversion of P. aeruginosa to the mucoid, exopolysaccharide alginate-overproducing phenotype. The emergence of mucoid P. aeruginosa in CF is associated with respiratory decline and poor prognosis. The switch to mucoidy in most CF isolates is caused by mutations in the mucA gene encoding an anti-sigma factor. The mutations in mucA result in the activation of the alternative sigma factor AlgU, the P. aeruginosa ortholog of Escherichia coli extreme stress sigma factor σE. Because of the global nature of the regulators of mucoidy, we have hypothesized that other genes, in addition to those specific for alginate production, must be induced upon conversion to mucoidy, and their production may contribute to the pathogenesis in CF. Here we applied microarray analysis to identify on the whole-genome scale those genes that are coinduced with the AlgU sigmulon upon conversion to mucoidy. Gene expression profiles of AlgU-dependent conversion to mucoidy revealed coinduction of a specific subset of known virulence determinants (the major protease elastase gene, alkaline metalloproteinase gene aprA, and the protease secretion factor genes aprE and aprF) or toxic factors (cyanide synthase) that may have implications for disease in CF. Analysis of promoter regions of the most highly induced genes (>40-fold, P ≤ 10−4) revealed a previously unrecognized, putative AlgU promoter upstream of the osmotically inducible gene osmE. This newly identified AlgU-dependent promoter of osmE was confirmed by mapping the mRNA 5′ end by primer extension. The recognition of genes induced in mucoid P. aeruginosa, other than those associated with alginate biosynthesis, reported here revealed the identity of previously unappreciated factors potentially contributing to the morbidity and mortality caused by mucoid P. aeruginosa in CF.


Nanomedicine ◽  
2020 ◽  
Vol 15 (18) ◽  
pp. 1743-1760
Author(s):  
Sunil Kumar Bose ◽  
Pradip Nirbhavane ◽  
Mahak Batra ◽  
Sanjay Chhibber ◽  
Kusum Harjai

Aim: Pseudomonas aeruginosa has emerged as a major opportunistic pathogen meaning there is an immediate need to develop efficient antivirulence agents which offer a new class of superior therapeutics. Methods: Nanostructured lipid carriers (NLCs) containing α-terpineol (αT) were developed and characterized to determine expression profiles of quorum sensing regulated genes, antivirulence activity and antibiofilm effects against P. aeruginosa. Results: The αT-NLCs had a size of 145.4 nm, polydispersity index of 0.242 and ζ-potential of -31.4 mV. They exhibited pronounced effects on the inhibition of quorum sensing mediated virulence and biofilm formation which were confirmed by molecular docking analysis and gene expression profiles. Conclusion: αT-NLCs show promise as effective antivirulence agents against P. aeruginosa in the postantibiotic era.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Saad Musbah Alasil ◽  
Rahmat Omar ◽  
Salmah Ismail ◽  
Mohd Yasim Yusof

Quorum sensing (QS) is a key regulator of virulence factors and biofilm formation in Gram-negative bacteria such as Pseudomonas aeruginosa. Microorganisms that inhabit soil are of strategic importance in the discovery of compounds with anti-QS properties. The objective of the study was to test the culture extract of a taxonomically novel species of Paenibacillus strain 139SI for its inhibitory effects on the QS-controlled virulence factors and biofilm formation of Pseudomonas aeruginosa both in vitro and in vivo. The Paenibacillus sp. culture extract was used to test its anti-QS effects on the LasA protease, LasB elastase, pyoverdin production, and biofilm formation of P. aeruginosa as well as evaluate its therapeutic effects on lung bacteriology, pathology, hematological profile, and serum antibody responses of experimental animals in a rat model of chronic lung infection. Results showed significant decrease in the activities of QS-controlled LasA protease, LasB elastase pyoverdin, and biofilm formation of P. aeruginosa caused by the culture extract. Moreover, the extract significantly prolonged the survival times of rats and facilitated the clearance of biofilm infections from infected lungs. In conclusion, the antiquorum sensing effects of culture extract from a novel species of Paenibacillus provide new insights to combat biofilm-associated infections.


Sign in / Sign up

Export Citation Format

Share Document