Melatonin influences insulin secretion, primarily via MT1 receptors in rat insulinoma cells (INS-1) and mouse pancreatic islets

2011 ◽  
pp. no-no
Author(s):  
Eckhard Mühlbauer ◽  
Elke Albrecht ◽  
Ivonne Bazwinsky-Wutschke ◽  
Elmar Peschke
2019 ◽  
Vol 20 (8) ◽  
pp. 1995 ◽  
Author(s):  
Hsin-Jung Ho ◽  
Hitoshi Shirakawa ◽  
Keisukei Hirahara ◽  
Hideyuki Sone ◽  
Shin Kamiyama ◽  
...  

Vitamin K2 is indispensable for blood coagulation and bone metabolism. Menaquinone-4 (MK-4) is the predominant homolog of vitamin K2, which is present in large amounts in the pancreas, although its function is unclear. Meanwhile, β-cell dysfunction following insulin secretion has been found to decrease in patients with type 2 diabetes mellitus. To elucidate the physiological function of MK-4 in pancreatic β-cells, we studied the effects of MK-4 treatment on isolated mouse pancreatic islets and rat INS-1 cells. Glucose-stimulated insulin secretion significantly increased in isolated islets and INS-1 cells treated with MK-4. It was further clarified that MK-4 enhanced cAMP levels, accompanied by the regulation of the exchange protein directly activated by the cAMP 2 (Epac2)-dependent pathway but not the protein kinase A (PKA)-dependent pathway. A novel function of MK-4 on glucose-stimulated insulin secretion was found, suggesting that MK-4 might act as a potent amplifier of the incretin effect. This study therefore presents a novel potential therapeutic approach for impaired insulinotropic effects.


2019 ◽  
Author(s):  
Hans E. Hohmeier ◽  
Lu Zhang ◽  
Brandon Taylor ◽  
Samuel Stephens ◽  
Peter McNamara ◽  
...  

AbstractA key event in the development of both major forms of diabetes is the loss of functional pancreatic islet β-cell mass. Strategies aimed at enhancing β-cell regeneration have long been pursued, but methods for reliably inducing human β-cell proliferation with full retention of key functions such as glucose-stimulated insulin secretion (GSIS) are still very limited. We have previously reported that overexpression of the homeobox transcription factor Nkx6.1 stimulates β-cell proliferation, while also enhancing GSIS and providing protection against β-cell cytotoxicity through induction of the VGF prohormone. We developed an Nkx6.1 pathway screen by stably transfecting 832/13 rat insulinoma cells with a VGF promoter-luciferase reporter construct, using the resultant cell line to screen a 630,000 compound chemical library. We isolated three compounds with consistent effects to stimulate human islet cell proliferation. Further studies of the most potent of these compounds, GNF-9228, revealed that it selectively activates human β-cell relative to α-cell proliferation and has no effect on δ-cell replication. In addition, pre-treatment, but not short term exposure of human islets to GNF-9228 enhances GSIS. GNF-9228 also protects 832/13 insulinoma cells against ER stress- and inflammatory cytokine-induced cytotoxicity. In contrast to recently emergent Dyrk1a inhibitors that stimulate human islet cell proliferation, GNF-9228 does not activate NFAT translocation. These studies have led to identification of a small molecule with pleiotropic positive effects on islet biology, including stimulation of human β-cell proliferation and insulin secretion, and protection against multiple agents of cytotoxic stress.


2010 ◽  
Vol 104 (8) ◽  
pp. 1148-1155 ◽  
Author(s):  
Rosane A. Ribeiro ◽  
Emerielle C. Vanzela ◽  
Camila A. M. Oliveira ◽  
Maria L. Bonfleur ◽  
Antonio C. Boschero ◽  
...  

Taurine (TAU) supplementation increases insulin secretion in response to high glucose concentrations in rodent islets. This effect is probably due to an increase in Ca2+handling by the islet cells. Here, we investigated the possible involvement of the cholinergic/phospholipase C (PLC) and protein kinase (PK) A pathways in this process. Adult mice were fed with 2 % TAU in drinking water for 30 d. The mice were killed and pancreatic islets isolated by the collagenase method. Islets from TAU-supplemented mice showed higher insulin secretion in the presence of 8·3 mm-glucose, 100 μm-carbachol (Cch) and 1 mm-3-isobutyl-1-methyl-xanthine (IBMX), respectively. The increase in insulin secretion in response to Cch in TAU islets was accompanied by a higher intracellular Ca2+mobilisation and PLCβ2protein expression. The Ca2+uptake was higher in TAU islets in the presence of 8·3 mm-glucose, but similar when the islets were challenged by glucose plus IBMX. TAU islets also showed an increase in the expression of PKAα protein. This protein may play a role in cation accumulation, since the amount of Ca2+in these islets was significantly reduced by the PKA inhibitors:N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89) and PK inhibitor-(6–22)-amide (PKI). In conclusion, TAU supplementation increases insulin secretion in response to glucose, favouring both influx and internal mobilisation of Ca2+, and these effects seem to involve the activation of both PLC–inositol-1,4,5-trisphosphate and cAMP–PKA pathways.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0224344 ◽  
Author(s):  
Hans E. Hohmeier ◽  
Lu Zhang ◽  
Brandon Taylor ◽  
Samuel Stephens ◽  
Danhong Lu ◽  
...  

1987 ◽  
Vol 248 (1) ◽  
pp. 109-115 ◽  
Author(s):  
J Sehlin

Microdissected beta-cell-rich pancreatic islets of non-inbred ob/ob mice were used in studies of how perchlorate (CIO4-) affects stimulus-secretion coupling in beta-cells. CIO4- at 16 mM potentiated D-glucose-induced insulin release, without inducing secretion at non-stimulatory glucose concentrations. The potentiation mainly applied to the first phase of stimulated insulin release. In the presence of 20 mM-glucose, the half-maximum effect of CIO4- was reached at 5.5 mM and maximum effect at 12 mM of the anion. The potentiation was reversible and inhibitable by D-mannoheptulose (20 mM) or Ca2+ deficiency. CIO4- at 1-8 mM did not affect glucose oxidation. The effects on secretion were paralleled by a potentiation of glucose-induced 45Ca2+ influx during 3 min. K+-induced insulin secretion and 45Ca2+ uptake were potentiated by 8-16 mM-CIO4-. The spontaneous inactivation of K+-induced (20.9 mM-K+) insulin release was delayed by 8 mM-CIO4-. The anion potentiated the 45Ca2+ uptake induced by glibenclamide, which is known to depolarize the beta-cell. Insulin release was not affected by 1-10 mM-trichloroacetate. It is suggested that CIO4- stimulates the beta-cell by affecting the gating of voltage-controlled Ca2+ channels.


Sign in / Sign up

Export Citation Format

Share Document