Emotional processing and executive functions in major depressive disorder: dorsal prefrontal activity correlates with performance in the intra–extra dimensional set shift

2010 ◽  
Vol 22 (6) ◽  
pp. 269-279 ◽  
Author(s):  
Alexander Heinzel ◽  
Georg Northoff ◽  
Heinz Boeker ◽  
Peter Boesiger ◽  
Simone Grimm

Heinzel A, Northoff G, Boeker H, Boesiger P, Grimm S. Emotional processing and executive functions in major depressive disorder: dorsal prefrontal activity correlates with performance in the intra–extra dimensional set shift.Objective:Major depressive disorder (MDD) is characterised by predominately negatively valenced emotional symptoms that are often accompanied by cognitive impairments. We posited that cognitive impairments in MDD are related to altered emotional processing in prefrontal cortex.Methods:We compared 20 medication-free patients with MDD and 29 matched healthy controls. Both groups performed an emotional task during functional magnetic resonance imaging (fMRI). Furthermore, they completed the intra–extra dimensional set shift (IED) test probing for cognitive impairments. Then we correlated the results of the IED with the changes in fMRI BOLD signal in MDD patients and healthy subjects.Results:The subcategory of the IED applying extradimensional shift (EDS) showed a divergent performance of the MDD group committing significantly more errors than the control group. Correlating the EDS errors with fMRI signal changes, the healthy subjects showed a positive correlation with the right ventrolateral prefrontal cortex and the right orbitofrontal cortex. MDD subjects, in contrast, showed a positive correlation in right dorsolateral prefrontal cortex (DLPFC) and a negative correlation in the left dorsomedial prefrontal cortex (DMPFC).Conclusion:We hypothesise that the differential correlation in healthy controls and MDD patients may reflect the use of different strategies in their performance. The impaired executive functions, as reflected by altered processing in right DLPFC and left DMPFC, may implicitly influence emotional processing in patients suffering from MDD.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Meiqi Yan ◽  
Xilong Cui ◽  
Feng Liu ◽  
Huabing Li ◽  
Renzhi Huang ◽  
...  

Background. Melancholic depression has been assumed as a severe type of major depressive disorder (MDD). We aimed to explore if there were some distinctive alterations in melancholic MDD and whether the alterations could be used to discriminate the melancholic MDD and nonmelancholic MDD. Methods. Thirty-one outpatients with melancholic MDD, thirty-three outpatients with nonmelancholic MDD, and thirty-two age- and gender-matched healthy controls were recruited. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with the network homogeneity (NH) and support vector machine (SVM) methods. Results. Both patient groups exhibited increased NH in the right PCC/precuneus and right angular gyrus and decreased NH in the right middle temporal gyrus compared with healthy controls. Compared with nonmelancholic patients and healthy controls, melancholic patients exhibited significantly increased NH in the bilateral superior medial frontal gyrus and decreased NH in the left inferior temporal gyrus. But merely for melancholic patients, the NH of the right middle temporal gyrus was negatively correlated with TEPS total and contextual anticipatory scores. SVM analysis showed that a combination of NH values in the left superior medial frontal gyrus and left inferior temporal gyrus could distinguish melancholic patients from nonmelancholic patients with accuracy, sensitivity, and specificity of 79.66% (47/59), 70.97% (22/31), and 89.29%(25/28), respectively. Conclusion. Our findings showed distinctive network homogeneity alterations in melancholic MDD which may be potential imaging markers to distinguish melancholic MDD and nonmelancholic MDD.


2022 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Benjamin C. Gibson ◽  
Andrei Vakhtin ◽  
Vincent P. Clark ◽  
Christopher C. Abbott ◽  
Davin K. Quinn

Hemispheric differences in emotional processing have been observed for over half a century, leading to multiple theories classifying differing roles for the right and left hemisphere in emotional processing. Conventional acceptance of these theories has had lasting clinical implications for the treatment of mood disorders. The theory that the left hemisphere is broadly associated with positively valenced emotions, while the right hemisphere is broadly associated with negatively valenced emotions, drove the initial application of repetitive transcranial magnetic stimulation (rTMS) for the treatment of major depressive disorder (MDD). Subsequent rTMS research has led to improved response rates while adhering to the same initial paradigm of administering excitatory rTMS to the left prefrontal cortex (PFC) and inhibitory rTMS to the right PFC. However, accumulating evidence points to greater similarities in emotional regulation between the hemispheres than previously theorized, with potential implications for how rTMS for MDD may be delivered and optimized in the near future. This review will catalog the range of measurement modalities that have been used to explore and describe hemispheric differences, and highlight evidence that updates and advances knowledge of TMS targeting and parameter selection. Future directions for research are proposed that may advance precision medicine and improve efficacy of TMS for MDD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eisuke Sakakibara ◽  
Yoshihiro Satomura ◽  
Jun Matsuoka ◽  
Shinsuke Koike ◽  
Naohiro Okada ◽  
...  

Near-infrared spectroscopy (NIRS) is a functional neuroimaging modality that has advantages in clinical usage. Previous functional magnetic resonance imaging (fMRI) studies have found that the resting-state functional connectivity (RSFC) of the default mode network (DMN) is increased, while the RSFC of the cognitive control network (CCN) is reduced in patients with major depressive disorder (MDD) compared with healthy controls. This study tested whether the NIRS-based RSFC measurements can detect the abnormalities in RSFC that have been associated with MDD in previous fMRI studies. We measured 8 min of resting-state brain activity in 34 individuals with MDD and 78 age- and gender-matched healthy controls using a whole-head NIRS system. We applied a previously established partial correlation analysis for estimating RSFCs between the 17 cortical regions. We found that MDD patients had a lower RSFC between the left dorsolateral prefrontal cortex and the parietal lobe that comprise the CCN, and a higher RSFC between the right orbitofrontal cortex and ventrolateral prefrontal cortex, compared to those in healthy controls. The RSFC strength of the left CCN was negatively correlated with the severity of depressive symptoms and the dose of antipsychotic medication and positively correlated with the level of social functioning. The results of this study suggest that NIRS-based measurements of RSFCs have potential clinical applications.


2014 ◽  
Vol 29 (7) ◽  
pp. 414-418 ◽  
Author(s):  
P.C. Hsieh ◽  
K.C. Chen ◽  
T.L. Yeh ◽  
I.H. Lee ◽  
P.S. Chen ◽  
...  

AbstractPurposeSerotonin transporter (SERT) and dopamine transporter (DAT) levels differ in patients with major depressive disorder (MDD) who are in a depressed state in comparison with healthy controls. In addition, a family history of depression is a potent risk factor for developing depression, and inherited vulnerability to serotonergic and dopaminergic dysfunction is suspected in this. The aim of this study was to examine the availabilities of midbrain SERT and striatal DAT in healthy subjects with and without a first-degree family history of MDD.MethodsEight healthy subjects with first-degree relatives with MDD and 16 sex- and age-matched healthy controls were recruited. The availabilities of SERT and DAT were approximated using SPECT, employing [123I] 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM) and [99mTc] TRODAT-1 as the ligands, respectively. There are missing data for one participant with a first-degree family history of MDD from the ADAM study, due to a lack of the radio-ligand at the time of experiment.ResultsSERT availability in the midbrain was significantly lower in subjects with a first-degree family history of MDD than in healthy subjects. However, DAT availability was no different between two groups.ConclusionsThe results with regard to the midbrain SERT level suggest the heritability of MDD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meiqi Yan ◽  
Yuqiong He ◽  
Xilong Cui ◽  
Feng Liu ◽  
Huabing Li ◽  
...  

Background: Melancholic depression has been viewed as one severe subtype of major depressive disorder (MDD). However, it is unclear whether melancholic depression has distinct changes in brain imaging. We aimed to explore specific or distinctive alterations in melancholic MDD and whether the alterations could be used to separate melancholic MDD from non-melancholic MDD or healthy controls.Materials and Methods: Thirty-one outpatients with melancholic MDD and thirty-three outpatients with non-melancholic MDD and thirty-two age- and gender-matched healthy controls were recruited. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with the regional homogeneity (ReHo) and support vector machine (SVM) methods.Results: Melancholic MDD patients exhibited lower ReHo in the right superior occipital gyrus/middle occipital gyrus than non-melancholic MDD patients and healthy controls. Merely for non-melancholic MDD patients, decreased ReHo in the right middle frontal gyrus was negatively correlated with the total HRSD-17 scores. SVM analysis results showed that a combination of abnormal ReHo in the right fusiform gyrus/cerebellum Crus I and the right superior occipital gyrus/middle occipital gyrus exhibited the highest accuracy of 83.05% (49/59), with a sensitivity of 90.32% (28/31), and a specificity of 75.00% (21/28) for discriminating patients with melancholic MDD from patients with non-melancholic MDD. And a combination of abnormal ReHo in the right fusiform gyrus/cerebellum VI and left postcentral gyrus/precentral gyrus exhibited the highest accuracy of 98.41% (62/63), with a sensitivity of 96.77% (30/31), and a specificity of 100.00%(32/32) for separating patients with melancholic MDD from healthy controls.Conclusion: Our findings showed the distinctive ReHo pattern in patients with melancholic MDD and found brain area that may be associated with the pathophysiology of non-melancholic MDD. Potential imaging markers for discriminating melancholic MDD from non-melancholic MDD or healthy controls were reported.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas Salvetat ◽  
Fabrice Chimienti ◽  
Christopher Cayzac ◽  
Benjamin Dubuc ◽  
Francisco Checa-Robles ◽  
...  

AbstractMental health issues, including major depressive disorder, which can lead to suicidal behavior, are considered by the World Health Organization as a major threat to global health. Alterations in neurotransmitter signaling, e.g., serotonin and glutamate, or inflammatory response have been linked to both MDD and suicide. Phosphodiesterase 8A (PDE8A) gene expression is significantly decreased in the temporal cortex of major depressive disorder (MDD) patients. PDE8A specifically hydrolyzes adenosine 3′,5′-cyclic monophosphate (cAMP), which is a key second messenger involved in inflammation, cognition, and chronic antidepressant treatment. Moreover, alterations of RNA editing in PDE8A mRNA has been described in the brain of depressed suicide decedents. Here, we investigated PDE8A A-to-I RNA editing-related modifications in whole blood of depressed patients and suicide attempters compared to age-matched and sex-matched healthy controls. We report significant alterations of RNA editing of PDE8A in the blood of depressed patients and suicide attempters with major depression, for which the suicide attempt took place during the last month before sample collection. The reported RNA editing modifications in whole blood were similar to the changes observed in the brain of suicide decedents. Furthermore, analysis and combinations of different edited isoforms allowed us to discriminate between suicide attempters and control groups. Altogether, our results identify PDE8A as an immune response-related marker whose RNA editing modifications translate from brain to blood, suggesting that monitoring RNA editing in PDE8A in blood samples could help to evaluate depressive state and suicide risk.


Sign in / Sign up

Export Citation Format

Share Document