THE EFFECT OF FIVE ULCERATING DOSES OF ALKYLDIMETHYLBENZYLAMMONIUMCHLORIDE (ZEPHIRAN) ON THE TUMOR PROMOTING ACTION OF POLYOXYETHYLENE SORBITAN MONOSTEARATE (TWEEN 60)

2009 ◽  
Vol 53 (1) ◽  
pp. 22-32 ◽  
Author(s):  
KAI DAMMERT
1999 ◽  
Vol 88 (6) ◽  
pp. 608-614 ◽  
Author(s):  
Sudaxshina Murdan ◽  
Gregory Gregoriadis ◽  
Alexander T. Florence

2004 ◽  
Vol 4 (1) ◽  
pp. 161-168 ◽  
Author(s):  
Jerrold W. Litwinenko ◽  
Anand Pal Singh ◽  
Alejandro G. Marangoni

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 467
Author(s):  
Shahla S. Smail ◽  
Mowafaq M. Ghareeb ◽  
Huner K. Omer ◽  
Ali A. Al-Kinani ◽  
Raid G. Alany

Nanoemulsions (NE) are isotropic, dispersions of oil, water, surfactant(s) and cosurfactant(s). A range of components (11 surfactants, nine cosurfactants, and five oils) were investigated as potential excipients for preparation of ketorolac tromethamine (KT) ocular nanoemulsion. Diol cosurfactants were investigated for the effect of their carbon chain length and dielectric constant (DEC), Log P, and HLB on saturation solubility of KT. Hen’s Egg Test—ChorioAllantoic Membrane (HET-CAM) assay was used to evaluate conjunctival irritation of selected excipients. Of the investigated surfactants, Tween 60 achieved the highest KT solubility (9.89 ± 0.17 mg/mL), followed by Cremophor RH 40 (9.00 ± 0.21 mg/mL); amongst cosurfactants of interest ethylene glycol yielded the highest KT solubility (36.84 ± 0.40 mg/mL), followed by propylene glycol (26.23 ± 0.82 mg/mL). The solubility of KT in cosurfactants was affected by four molecular descriptors: carbon chain length, DEC, log P and HLB. KT solubility was directly proportional to DEC and the HLB yet, inversely proportional to carbon chain length and log P. All surfactants, except Labrasol ALF, were non-irritant. The majority of cosurfactants were slightly irritant, butylene glycol was a moderate irritant, pentylene and hexylene glycols were strong irritants. These findings will inform experiments aimed at developing NE formulations for ocular administration of KT.


2021 ◽  
Vol 21 (7) ◽  
pp. 3955-3959
Author(s):  
Abid Farooq ◽  
Young-Kwon Park

Catalytic pyrolysis oil (CPO) was produced from lignin using the ex-situ mechanism and nanoporous HZSM-5 (SiO2/Al2O3 = 50) as a catalyst. The oil contained phenolics, esters, acids, and benzene derivatives as the major constituents. The emulsification of CPO in diesel was tested with several emulsifier combinations such as Span 80 and Tween 60, Span 80 and Atlox 4916, and Atlox 4916 and Zephrym PD3315 in the HLB range of 5.8–7.3. The HLB value of 5.8 using the combination of Span 80 and Atlox 4916 and the CPO:emulsifier:diesel ratio of 5:2:93 (wt%), provided a stable emulsion for 10 days. The physiochemical properties of that emulsion were comparable to diesel. Hence, emulsions of CPO and diesel can potentially be used as a diesel engine fuel.


1997 ◽  
Vol 122 (3) ◽  
pp. 386-391 ◽  
Author(s):  
Robert A. Saftner ◽  
J. George Buta ◽  
William S. Conway ◽  
Carl E. Sams

The effects of 36 organosilicone and conventional carbon-based surfactants on postharvest infiltration of radiolabeled and unlabeled Ca solutions into `Golden Delicious' apples (Malus domestica Borkh) were examined to devise a more efficient pressure infiltration technique to increase fruit Ca concentration. Radiolabeled Ca infiltration and the proportional increase in fruit Ca estimated by fruit weight gain from Ca solutions of known concentration were significantly enhanced by a range of surfactants having different chemical structures. Tween 60 and 80; Triton X-45, X-100, X-114, X-305, and X-405; and Silwet L-77 and L-7604 enhanced Ca infiltration. The two organosilicone surfactants, Silwet L-77 and Silwet L-7604, known for their greater capacity to lower the surface tension of solutions than conventional carbon-based surfactants, were the most effective at augmenting Ca infiltration. Applications of surfactants to fruit were as or more effective when used as a pretreatment rather than mixing the surfactant with the Ca solutions. The pressure necessary to increase Ca to levels considered sufficient to maintain fruit firmness and resist decay during storage could be lowered in fruit treated with organosilicone surfactants. Sequential postharvest surfactant and Ca treatments may be a practical means of increasing the Ca concentration in apples.


Sign in / Sign up

Export Citation Format

Share Document