Molecular characterization, phylogenetic relationships, and developmental expression patterns of prion genes in zebrafish (Danio rerio)

FEBS Journal ◽  
2004 ◽  
Vol 272 (2) ◽  
pp. 500-513 ◽  
Author(s):  
Emmanuelle Cotto ◽  
Michèle André ◽  
Jean Forgue ◽  
Hervé J Fleury ◽  
Patrick J Babin
Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1792-1801 ◽  
Author(s):  
Andrew C. Oates ◽  
Stephen J. Pratt ◽  
Brenda Vail ◽  
Yi-lin Yan ◽  
Robert K. Ho ◽  
...  

Abstract The Krüppel-like factor(KLF) family of genes encodes transcriptional regulatory proteins that play roles in differentiation of a diverse set of cells in mammals. For instance, the founding memberKLF1 (also known as EKLF) is required for normal globin production in mammals. Five new KLF genes have been isolated from the zebrafish, Danio rerio, and the structure of their products, their genetic map positions, and their expression during development of the zebrafish have been characterized. Three genes closely related to mammalian KLF2 andKLF4 were found, as was an ortholog of mammalianKLF12. A fifth gene, apparently missing from the genome of mammals and closely related to KLF1 and KLF2,was also identified. Analysis demonstrated the existence of novel conserved domains in the N-termini of these proteins. Developmental expression patterns suggest potential roles for these zebrafish genes in diverse processes, including hematopoiesis, blood vessel function, and fin and epidermal development. The studies imply a high degree of functional conservation of the zebrafish genes with their mammalian homologs. These findings further the understanding of theKLF genes in vertebrate development and indicate an ancient role in hematopoiesis for the Krüppel-like factorgene family.


2001 ◽  
Vol 121 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Jonas von Hofsten ◽  
Iwan Jones ◽  
Johnny Karlsson ◽  
Per-Erik Olsson

2008 ◽  
Vol 237 (5) ◽  
pp. 1399-1411 ◽  
Author(s):  
Simona Candiani ◽  
Thurston C. Lacalli ◽  
Manuela Parodi ◽  
Diana Oliveri ◽  
Mario Pestarino

2014 ◽  
Vol 111 (11) ◽  
pp. 1918-1931 ◽  
Author(s):  
Sam Penglase ◽  
Kristin Hamre ◽  
Josef D. Rasinger ◽  
Staale Ellingsen

Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates.


Sign in / Sign up

Export Citation Format

Share Document