scholarly journals Glutamine stimulates the gene expression and processing of sterol regulatory element binding proteins, thereby increasing the expression of their target genes

FEBS Journal ◽  
2011 ◽  
Vol 278 (15) ◽  
pp. 2739-2750 ◽  
Author(s):  
Jun Inoue ◽  
Yuka Ito ◽  
Satoko Shimada ◽  
Shin-ich Satoh ◽  
Takashi Sasaki ◽  
...  
2007 ◽  
Vol 8 (1) ◽  
pp. 62
Author(s):  
S. Rodriguez-Acebes ◽  
J. Martinez-Botas ◽  
A. Davalos ◽  
M.A. Lasuncion ◽  
R.B. Rawson ◽  
...  

2015 ◽  
Vol 35 (2) ◽  
pp. 803-815 ◽  
Author(s):  
Andreas Bitter ◽  
Andreas K. Nüssler ◽  
Wolfgang E. Thasler ◽  
Kathrin Klein ◽  
Ulrich M. Zanger ◽  
...  

Background/Aims: Sterol regulatory element-binding protein (SREBP) 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.


2008 ◽  
Vol 100 (2) ◽  
pp. 355-363 ◽  
Author(s):  
Bettina König ◽  
Julia Spielmann ◽  
Kati Haase ◽  
Corinna Brandsch ◽  
Holger Kluge ◽  
...  

In mammals, (n-3) PUFA and conjugated linoleic acids (CLA) act as activators of PPARα and alter nuclear concentrations of sterol regulatory element-binding proteins (SREBP) in the liver, and thereby influence hepatic lipid catabolism and synthesis. In this study, we investigated the hypothesis that (n-3) PUFA and CLA exert similar effects in the liver of laying hens. Thirty hens (64 weeks old) were fed diets containing 30 g/kg of sunflower oil (control), fish oil (salmon oil) or CLA in TAG form (containing predominantlycis-9,trans-11 CLA andtrans-10,cis-12 CLA) for 5 weeks. Hens fed fish oil had a higher expression of some PPARα target genes and a lower nuclear concentration of SREBP-2 in the liver and lower concentrations of cholesterol and TAG in plasma than control hens. Nuclear concentration of SREBP-1 and its target genes involved in lipogenesis were not altered in hens fed fish oil. Hens fed CLA had increased concentrations of TAG and cholesterol in the liver. However, their mRNA levels of PPARα target genes and nuclear concentrations of SREBP-1 and SREBP-2 as well as mRNA levels of their target genes in the liver were largely unchanged compared to control hens. The results of this study suggest that (n-3) PUFA cause a moderate activation of PPARα and lower cholesterol synthesis but do not impair fatty acid synthesis in the liver of laying hens. CLA lead to an accumulation of TAG and cholesterol in the liver of hens by mechanisms to be elucidated in further studies.


2013 ◽  
Vol 27 (5) ◽  
pp. 781-800 ◽  
Author(s):  
Robert Ringseis ◽  
Christine Rauer ◽  
Susanne Rothe ◽  
Denise K. Gessner ◽  
Lisa-Marie Schütz ◽  
...  

Abstract The uptake of iodide into the thyroid, an essential step in thyroid hormone synthesis, is an active process mediated by the sodium-iodide symporter (NIS). Despite its strong dependence on TSH, the master regulator of the thyroid, the NIS gene was also reported to be regulated by non-TSH signaling pathways. In the present study we provide evidence that the rat NIS gene is subject to regulation by sterol regulatory element-binding proteins (SREBPs), which were initially identified as master transcriptional regulators of lipid biosynthesis and uptake. Studies in FRTL-5 thyrocytes revealed that TSH stimulates expression and maturation of SREBPs and expression of classical SREBP target genes involved in lipid biosynthesis and uptake. Almost identical effects were observed when the cAMP agonist forskolin was used instead of TSH. In TSH receptor-deficient mice, in which TSH/cAMP-dependent gene regulation is blocked, the expression of SREBP isoforms in the thyroid was markedly reduced when compared with wild-type mice. Sterol-mediated inhibition of SREBP maturation and/or RNA interference-mediated knockdown of SREBPs reduced expression of NIS and NIS-specific iodide uptake in FRTL-5 cells. Conversely, overexpression of active SREBPs caused a strong activation of the 5′-flanking region of the rat NIS gene mediated by binding to a functional SREBP binding site located in the 5′-untranslated region of the rat NIS gene. These findings show that TSH acts as a regulator of SREBP expression and maturation in thyroid epithelial cells and that SREBPs are novel transcriptional regulators of NIS.


Sign in / Sign up

Export Citation Format

Share Document