ENZYMATIC HYDROLYSIS OF WHEY PROTEINS BY TWO DIFFERENT PROTEASES AND THEIR EFFECT ON THE FUNCTIONAL PROPERTIES OF RESULTING PROTEIN HYDROLYSATES

2006 ◽  
Vol 30 (1) ◽  
pp. 77-97 ◽  
Author(s):  
S. SEVERIN ◽  
W.S. XIA
2011 ◽  
Vol 20 (No. 1) ◽  
pp. 7-14 ◽  
Author(s):  
M. Hrčková ◽  
M. Rusňáková ◽  
J. Zemanovič

Commercial defatted soy flour (DSF) was dispersed in distilled water at pH 7 to prepare 5% aqueous dispersion. Soy protein hydrolysates (SPH) were obtained by enzymatic hydrolysis of the DSF using three different proteases (Flavourzyme 1000 L, No-vozym FM 2.0 L and Alcalase 2.4 L FG). The highest degree of hydrolysis (DH 39.5) was observed in the presence of protease Flavourzyme. SPH were used for measuring functional properties (foaming stability, gelation). Treatment with Flavourzyme improved foaming of proteins of DSF. Foaming stability was low in the presence of Novozym. Proteases treated DSF showed good gelation properties, mainly in the case of treatment with Flavourzyme. SDS-PAGE analysis showed that after enzyme ad-dition to the 5% aqueous dispersion of DSF each enzyme degraded both b-conglycinin and glycinin. In general, the basic polypeptide from glycinin showed the highest resistance to proteolytic activity. The most abundant free amino acids in the hydrolysates were histidine (30%), leucine (24%) and tyrosine (19%) in the case of the treatment with proteases Alcalase and Novozym, and arginine (22.1%), leucine (10.6%) and phenylalanine (12.9%) in the case of the treatment with Flavourzyme.  


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3507
Author(s):  
Violeta Popescu ◽  
Andreia Molea ◽  
Marioara Moldovan ◽  
Pompilia Mioara Lopes ◽  
Amalia Mazilu Moldovan ◽  
...  

Amino-acids, peptides, and protein hydrolysates, together with their coordinating compounds, have various applications as fertilizers, nutritional supplements, additives, fillers, or active principles to produce hydrogels with therapeutic properties. Hydrogel-based patches can be adapted for drug, protein, or peptide delivery, and tissue healing and regeneration. These materials have the advantage of copying the contour of the wound surface, ensuring oxygenation, hydration, and at the same time protecting the surface from bacterial invasion. The aim of this paper is to describe the production of a new type of hydrogel based on whey protein isolates (WPI), whey protein hydrolysates (WPH), and gelatin. The hydrogels were obtained by utilizing a microwave-assisted method using gelatin, glycerol, WPI or WPH, copper sulfate, and water. WPH was obtained by enzymatic hydrolysis of whey protein isolates in the presence of bromelain. The hydrogel films obtained have been characterized by FT-IR and UV-VIS spectroscopy. The swelling degree and swelling kinetics have also been determined.


2006 ◽  
Vol 83 (8) ◽  
pp. 731-737 ◽  
Author(s):  
B. P. Lamsal ◽  
C. Reitmeier ◽  
P. A. Murphy ◽  
L. A. Johnson

Author(s):  
Vitor Geniselli da Silva ◽  
Ruann Janser Soares de Castro

Aiming to explore the use of ionic liquids (ILs) not yet described in the literature, this work evaluated the hydrolysis of proteins from chicken viscera using the protease Alcalase modified and unmodified by the IL tetramethylammonium bromide. The protein hydrolysates produced in the presence of the IL presented values of antioxidant activities 40% higher than the hydrolysates obtained without IL. In addition, with the presence of the IL, it was possible to obtain protein hydrolysates from chicken viscera with similar antioxidant activities, compared to the protein hydrolysates produced without IL, using 1/3 of the amount of enzyme.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 381 ◽  
Author(s):  
Giulia Leni ◽  
Lise Soetemans ◽  
Augusta Caligiani ◽  
Stefano Sforza ◽  
Leen Bastiaens

Protein hydrolysates from lesser mealworm (Alphitobius diaperinus, LM) were obtained by enzymatic hydrolysis with protease from Bacillus licheniformis. A preliminary test performed for five hours of hydrolysis generated an insect protein hydrolysate with 15% of degree of hydrolysis (DH), optimum solubility property and oil holding capacity, but emulsifying and foaming ability were completely impaired. In order to investigate the potential implication of DH on techno-functional properties, a set of protein hydrolysates with a different DH was obtained by sub-sampling at different time points during three hours of enzymatic hydrolysis process. An increase in DH% had positive effects on the solubility property and oil holding ability, while a reduced emulsifying ability was observed up to five hours of hydrolysis. These results demonstrated that the enzymatic hydrolysis, if performed under controlled conditions and not for a long period, represents a valid method to extract high quality protein from insects with tailored techno-functionality, in order to produce tailored ingredients for feed and food purpose.


2012 ◽  
Vol 554-556 ◽  
pp. 1327-1331
Author(s):  
Li Jun Zhang ◽  
Qian Cheng Zhao ◽  
Bing Bing Wang ◽  
Xue Wan ◽  
Zhi Bo Li ◽  
...  

Protein hydrolysates from Tuna frame (TFPH) and Pollock frame (PFPH) were prepared by papain, respectively.The yield, the basic composition content, the antioxidant activity and functional properties (solubility, emulsifying and foaming ability) and the degree of hydrolysis of the protein hydrolysates were evaluated. Results suggest that solubility, antioxidant activity of protein hydrolysate from Pollock frame are better than that of tuna frame, but the yield is lower than that of tuna frame.


Sign in / Sign up

Export Citation Format

Share Document