INFLUENCE OF MODIFIED ATMOSPHERE PACKAGING ON SHELF-LIFE OF CHICKEN CARCASSES UNDER REFRIGERATED STORAGE CONDITIONS

1995 ◽  
Vol 15 (1) ◽  
pp. 35-51 ◽  
Author(s):  
W.N. SAWAYA ◽  
A.S. ELNAWAWY ◽  
A.S. ABU-RUWAIDA ◽  
S. KHALAFAWI ◽  
B. DASHTI
2020 ◽  
Vol 12 (18) ◽  
pp. 7547 ◽  
Author(s):  
Rabia Kanwal ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Irrum Babu ◽  
Zarina Yasmin ◽  
...  

Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 °C) and low (i.e., 7 °C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, ∆E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 °C and 7 °C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 °C and 20 days at 7 °C.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Seul-Gi Jeong ◽  
Ho Myeong Kim ◽  
Junheon Kim ◽  
Jae Su Kim ◽  
Hae Woong Park

AbstractMetarhizium anisopliae is a promising alternative to chemical pesticides against pine wilt disease caused by Bursaphelenchus xylophilus. Herein, we investigated the efficacy of modified atmosphere packaging (MAP) to prolong the shelf-life of the M. anisopliae conidia. The effects of various conditions on its stability were also examined. M. anisopliae-inoculated millet grains were treated in a MAP system with different packaging materials (polypropylene, PP; polyethylene terephthalate, PET; ethylene vinyl alcohol, EVOH), gas compositions (high CO2 atmosphere, ≈ 90%; high O2 atmosphere, > 95%; high N2 atmosphere, > 95%; 30% CO2 + 70% N2; 50% CO2 + 50% N2; 70% CO2 + 30% N2), and storage temperatures (4 and 25 °C). Results revealed EVOH film as the best for the preservation of gases at all concentrations for 28 days. MAP treatment in the high-barrier EVOH film under an atmosphere of 30% CO2 + 70% N2 achieved 80.5% viability of dried conidia (7.4% moisture content), with 44.2–64.9% viability recorded with the other treatments. Cold storage for technical concentrates formulation promoted extension of shelf-life of MAP-treated conidia. These results imply that MAP under optimized conditions could enhance the shelf-life of fungus-based biopesticides in fungus-colonized substrates formulations.


2020 ◽  
Vol 32 (1) ◽  
pp. 73-82
Author(s):  
MD. TARIQUL ISLAM ◽  
ESMOUT JAHAN ALICE ◽  
SUSHMITA SAHA ◽  
MD. ABDUL KARIM ◽  
MD. AMANULLAH ◽  
...  

The effects of vacuum (VP) and 100% N2 modified atmosphere packaging (MAP) on the qualityand shelf-life of sliced pangasius catfish (Pangasianodon hypophthalmus) during refrigerated storage (4°C)were investigated up to 12 days. The values of pH, total volatile base nitrogen (TVB-N) and thiobarbituricacid reactive substance (TBARS) of sliced fish samples during storage under VP and MAP packaging werewithin the limit acceptable for chilled fish. Total viable count (TVC) of pangasius fish, on the other hand,gradually increased from the initial value of 4.32±0.04 to 8.30±0.13 log CFU/g on day 9 for non-sealedpack (control) and 7.64±0.12 and 8.34±0.07 log CFU/g for VP and MAP on day 12. There were nosignificant (p<0.05) differences in TVC values among the three packaging conditions during the storageperiod except on day 9 where significantly (p<0.05) lower TVC values were observed in the VP samplecompared to that of other samples. Based on the bacterial counts of 7 log CFU/g, which is considered as theupper acceptable limit for fresh and frozen fish, the shelf-life was determined as the excess of 6 days forcontrol pack and MAP samples, and excess of 9 days for VP sample. Therefore, VP is a good option toincrease the shelf-life of wet fish, which can be adopted by the superstores to display their products withextended shelf-life.


2017 ◽  
Vol 61 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Olaf K. Horbańczuk ◽  
Agnieszka Wierzbicka

Abstract Over the last years a growing demand for ratite meat, including ostrich, emu, and rhea has been observed in the world. Ratite meat is recognised as a dietetic product because of low level of fat, high share of PUFA, favourable n6/n3 ratio, and higher amounts of iron content in comparison with beef and chicken meat. The abundance of bioactive compounds, e.g. PUFA, makes ratite meat highly susceptible to oxidation processes. Moreover, pH over 6 creates favourable environment for fast microbial growth during storage conditions affecting its shelf life. However, availability of information on ratite meat shelf life among consumers and industry is still limited. Thus, the aim of the present review is to provide current information about the effect of ratite meat packaging type, i.e. air packaging, vacuum packaging with skin pack, modified atmosphere packaging (MAP), on its shelf life quality during storage, including technological and nutritional properties.


2018 ◽  
Vol 7 (5) ◽  
pp. 7
Author(s):  
Jane Ambuko ◽  
Esther Karithi ◽  
Margaret Hutchinson ◽  
Willis Owino

Recently, the Coolbot™ technology was introduced to smallholder farmers in Kenya as a low-cost alternative to conventional cold rooms. The present study sought to establish the additive benefits of cold storage under Coolbot™ cold storage and modified atmosphere packaging (MAP) in mango fruits. The participatory study was conducted in Makueni County of Kenya between November 2014 and July 2015. The mango fruits (variety ‘Apple mango’) were harvested at mature green stage from commercial orchards owned by smallholder farmers. The fruits were selected for uniformity and randomly separated into four batches which were subjected to four different treatments (storage conditions). The treatments included fruits packaged using Activebag® MAP or not packaged and either stored in the Coolbot cold room or at ambient room conditions. A random sample was taken at regular intervals from each of the four storage environments and evaluated for ripening and quality related changes during storage. The parameters evaluated included physiological weight loss, respiration, firmness, color, sugars and vitamin C. Results showed that cold storage extended the shelf life of mango fruits by 23 days without MAP and 28 days with MAP, in comparison to storage at ambient room conditions. Slow ripening under cold storage (with and without MAP) was evidenced by lower rates of respiration, softening, color changes and sugars accumulation compared to ambient room conditions. In addition, cold-stored mango fruits maintained better nutritional quality as evidenced by higher vitamin C levels, 59.77 mg/100mL and 51.8 mg/100mL with and without MAP respectively at the end of storage (day 40 and 35). This was significantly higher (p&lt;0.05) compared to 55.17 and 51.53 mg/100 mL vitamin C for MAP packed and unpacked fruits at the end of storage under ambient room conditions (day 12). The results demonstrate the additive benefit of MAP and cold storage to preserve postharvest quality and extend the shelf life of mango fruits. 


Author(s):  
Razieh Niazmand ◽  
Samira Yeganehzad

Abstract Background Barberry has long been used as an herbal remedy since ancient times which is found throughout temperate and subtropical regions of the world. Given the short harvesting season and limited shelf life of the barberry, we evaluated the possibility of using modified atmosphere packaging and oxygen-scavenger sachets to increase its storage period. For this purpose, the physicochemical characterization (antioxidant activity, anthocyanin, phenolic compounds, and ascorbic acid content, acidity, firmness, color, and decay incident) of fresh barberry samples packaged within different atmospheres was investigated over 4 weeks of storage at 4 and 25 °C. The barberries were packaged with low-density polyethylene/polyester (LDPE/PET) films under natural atmosphere (C), N2 gas (N), vacuum (V), or in the presence of an oxygen scavenger (OS). Results The results revealed that with increased storage period, the O2 and CO2 levels inside the packages decreased and increased, respectively. The antioxidant activity and amounts of anthocyanin, phenolic compounds, and ascorbic acid all decreased with increasing storage period. Among the studied atmospheres, the OS and, subsequently, V packages were most capable of maintaining the quality of fresh barberries, with the decay incidence being approximately 30 times lower inside these packages relative to the control. Increasing the storage temperature accelerated the intensity of chemical changes and decay across all samples. Conclusion The barberries inside the OS packages stored at 4 °C (and even at 25 °C) still had good sensory properties in terms of chemical properties, texture, and color after 4 weeks. Fortunately, it seems that this packaging technology makes the exportation and delayed consumption of the fresh barberry possible by maintaining its quality.


Sign in / Sign up

Export Citation Format

Share Document