scholarly journals Effects of packaging methods on shelf life of ratite meats

2017 ◽  
Vol 61 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Olaf K. Horbańczuk ◽  
Agnieszka Wierzbicka

Abstract Over the last years a growing demand for ratite meat, including ostrich, emu, and rhea has been observed in the world. Ratite meat is recognised as a dietetic product because of low level of fat, high share of PUFA, favourable n6/n3 ratio, and higher amounts of iron content in comparison with beef and chicken meat. The abundance of bioactive compounds, e.g. PUFA, makes ratite meat highly susceptible to oxidation processes. Moreover, pH over 6 creates favourable environment for fast microbial growth during storage conditions affecting its shelf life. However, availability of information on ratite meat shelf life among consumers and industry is still limited. Thus, the aim of the present review is to provide current information about the effect of ratite meat packaging type, i.e. air packaging, vacuum packaging with skin pack, modified atmosphere packaging (MAP), on its shelf life quality during storage, including technological and nutritional properties.

2020 ◽  
Vol 12 (18) ◽  
pp. 7547 ◽  
Author(s):  
Rabia Kanwal ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Irrum Babu ◽  
Zarina Yasmin ◽  
...  

Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 °C) and low (i.e., 7 °C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, ∆E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 °C and 7 °C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 °C and 20 days at 7 °C.


2019 ◽  
Vol 9 (23) ◽  
pp. 5019 ◽  
Author(s):  
Theofania Tsironi ◽  
Athina Ntzimani ◽  
Eleni Gogou ◽  
Maria Tsevdou ◽  
Ioanna Semenoglou ◽  
...  

The aim of the study was the evaluation and mathematical modeling of the effect of active modified atmosphere packaging (MAP), by the incorporation of CO2 emitters in the package, on the microbial stability and shelf life of gutted sea bass during refrigerated storage. Gutted sea bass samples were packaged in modified atmosphere (50% CO2–40% N2–10% O2) with and without CO2 emitters (ACT-MAP, MAP) (gas/product volume ratio 3:1) and stored at isothermal conditions: 0 °C, 5 °C, and 10 °C. The gas concentration in the package headspace (%CO2, %O2) and microbial growth (total viable count, TVC, Pseudomonas spp., Enterobacteriaceae spp., lactic acid bacteria) were monitored during storage. The microbial growth was modeled using the Baranyi growth model, and the kinetic parameters (microbial growth rate, lag phase) were estimated at the tested temperature and packaging conditions. The results showed that the ACT-MAP samples presented significantly lower microbial growth compared to the MAP samples. The growth rate of the total viable count at 0 °C was 0.175 and 0.138 d−1 for the MAP and ACT-MAP sea bass, respectively (p < 0.05). The shelf life of the MAP sea bass at 0–10 °C (based on a final TVC value: 7 log CFU g−1) was extended 4–7 days with the addition of a CO2 emitter in the package. The CO2 concentration in the ACT-MAP samples was stabilized at approximately 60%, while the CO2 in the MAP samples was approximately 40% at the end of the shelf life.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Seul-Gi Jeong ◽  
Ho Myeong Kim ◽  
Junheon Kim ◽  
Jae Su Kim ◽  
Hae Woong Park

AbstractMetarhizium anisopliae is a promising alternative to chemical pesticides against pine wilt disease caused by Bursaphelenchus xylophilus. Herein, we investigated the efficacy of modified atmosphere packaging (MAP) to prolong the shelf-life of the M. anisopliae conidia. The effects of various conditions on its stability were also examined. M. anisopliae-inoculated millet grains were treated in a MAP system with different packaging materials (polypropylene, PP; polyethylene terephthalate, PET; ethylene vinyl alcohol, EVOH), gas compositions (high CO2 atmosphere, ≈ 90%; high O2 atmosphere, > 95%; high N2 atmosphere, > 95%; 30% CO2 + 70% N2; 50% CO2 + 50% N2; 70% CO2 + 30% N2), and storage temperatures (4 and 25 °C). Results revealed EVOH film as the best for the preservation of gases at all concentrations for 28 days. MAP treatment in the high-barrier EVOH film under an atmosphere of 30% CO2 + 70% N2 achieved 80.5% viability of dried conidia (7.4% moisture content), with 44.2–64.9% viability recorded with the other treatments. Cold storage for technical concentrates formulation promoted extension of shelf-life of MAP-treated conidia. These results imply that MAP under optimized conditions could enhance the shelf-life of fungus-based biopesticides in fungus-colonized substrates formulations.


2018 ◽  
Vol 7 (5) ◽  
pp. 7
Author(s):  
Jane Ambuko ◽  
Esther Karithi ◽  
Margaret Hutchinson ◽  
Willis Owino

Recently, the Coolbot™ technology was introduced to smallholder farmers in Kenya as a low-cost alternative to conventional cold rooms. The present study sought to establish the additive benefits of cold storage under Coolbot™ cold storage and modified atmosphere packaging (MAP) in mango fruits. The participatory study was conducted in Makueni County of Kenya between November 2014 and July 2015. The mango fruits (variety ‘Apple mango’) were harvested at mature green stage from commercial orchards owned by smallholder farmers. The fruits were selected for uniformity and randomly separated into four batches which were subjected to four different treatments (storage conditions). The treatments included fruits packaged using Activebag® MAP or not packaged and either stored in the Coolbot cold room or at ambient room conditions. A random sample was taken at regular intervals from each of the four storage environments and evaluated for ripening and quality related changes during storage. The parameters evaluated included physiological weight loss, respiration, firmness, color, sugars and vitamin C. Results showed that cold storage extended the shelf life of mango fruits by 23 days without MAP and 28 days with MAP, in comparison to storage at ambient room conditions. Slow ripening under cold storage (with and without MAP) was evidenced by lower rates of respiration, softening, color changes and sugars accumulation compared to ambient room conditions. In addition, cold-stored mango fruits maintained better nutritional quality as evidenced by higher vitamin C levels, 59.77 mg/100mL and 51.8 mg/100mL with and without MAP respectively at the end of storage (day 40 and 35). This was significantly higher (p&lt;0.05) compared to 55.17 and 51.53 mg/100 mL vitamin C for MAP packed and unpacked fruits at the end of storage under ambient room conditions (day 12). The results demonstrate the additive benefit of MAP and cold storage to preserve postharvest quality and extend the shelf life of mango fruits. 


2013 ◽  
Vol 76 (1) ◽  
pp. 99-107 ◽  
Author(s):  
CAROLA GREBITUS ◽  
HELEN H. JENSEN ◽  
JUTTA ROOSEN ◽  
JOSEPH G. SEBRANEK

Consumers' perceptions and evaluations of meat quality attributes such as color and shelf life influence purchasing decisions, and these product attributes can be affected by the type of fresh meat packaging system. Modified atmosphere packaging (MAP) extends the shelf life of fresh meat and, with the inclusion of carbon monoxide (CO-MAP), achieves significant color stabilization. The objective of this study was to assess whether consumers would accept specific packaging technologies and what value consumers place on ground beef packaged under various atmospheres when their choices involved the attributes of color and shelf life. The study used nonhypothetical consumer choice experiments to determine the premiums that consumers are willing to pay for extended shelf life resulting from MAP and for the “cherry red” color in meat resulting from CO-MAP. The experimental design allowed determination of whether consumers would discount foods with MAP or CO-MAP when (i) they are given more detailed information about the technologies and (ii) they have different levels of individual knowledge and media exposure. The empirical analysis was conducted using multinomial logit models. Results indicate that consumers prefer an extension of shelf life as long as the applied technology is known and understood. Consumers had clear preferences for brighter (aerobic and CO) red color and were willing to pay $0.16/lb ($0.35/kg) for each level of change to the preferred color. More information on MAP for extending the shelf life and on CO-MAP for stabilizing color decreased consumers' willingness to pay. An increase in personal knowledge and media exposure influenced acceptance of CO-MAP negatively. The results provide quantitative measures of how packaging affects consumers' acceptance and willingness to pay for products. Such information can benefit food producers and retailers who make decisions about investing in new packaging methods.


2011 ◽  
Vol 17 (1) ◽  
pp. 23-29 ◽  
Author(s):  
A.M. Sanguinetti ◽  
A. Del Caro ◽  
N.P. Mangia ◽  
N. Secchi ◽  
P. Catzeddu ◽  
...  

This study evaluated the shelf life of fresh pasta filled with cheese subjected to modified atmosphere packaging (MAP) or air packaging (AP). After a pasteurization treatment, fresh pasta was packaged under a 50/50 N2/CO2 ratio or in air (air batch). Changes in microbial growth, in-package gas composition, chemical—physical parameters and sensory attributes were monitored for 42 days at 4 °C. The pasteurization treatment resulted in suitable microbiological reduction. MAP allowed a mold-free shelf life of the fresh filled pasta of 42 days, whereas air-packaged samples got spoilt between 7 and 14 days. The hurdle approach used (MAP and low storage temperature) prevented the growth of pathogens and alterative microorganisms. MAP samples maintained a high microbiological standard throughout the storage period. The panel judged MAP fresh pasta above the acceptability threshold throughout the shelf life.


Sign in / Sign up

Export Citation Format

Share Document