Responses of single arterioles in vivo in cat skeletal muscle to change in arterial pressure applied at different rates

1981 ◽  
Vol 113 (2) ◽  
pp. 207-212 ◽  
Author(s):  
PER BORGSTRÖM ◽  
PER-OLOF GRÄNDE ◽  
LENNART LINDBOM
1990 ◽  
Vol 112 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Shou-Yan Lee ◽  
G. W. Schmid-Scho¨nbein

Although blood flow in the microcirculation of the rat skeletal muscle has negligible inertia forces with very low Reynolds number and Womersley parameter, time-dependent pressure and flow variations can be observed. Such phenomena include, for example, arterial flow overshoot following a step arterial pressure, a gradual arterial pressure reduction for a step flow, or hysteresis between pressure and flow when a pulsatile pressure is applied. Arterial and venous flows do not follow the same time course during such transients. A theoretical analysis is presented for these phenomena using a microvessel with distensible viscoelastic walls and purely viscous flow subject to time variant arterial pressures. The results indicate that the vessel distensibility plays an important role in such time-dependent microvascular flow and the effects are of central physiological importance during normal muscle perfusion. In-vivo whole organ pressure-flow data in the dilated rat gracilis muscle agree in the time course with the theoretical predictions. Hemodynamic impedances of the skeletal muscle microcirculation are investigated for small arterial and venous pressure amplitudes superimposed on an initial steady flow and pressure drop along the vessel.


2001 ◽  
Vol 281 (2) ◽  
pp. H951-H958 ◽  
Author(s):  
Jeffrey J. Bishop ◽  
Patricia R. Nance ◽  
Aleksander S. Popel ◽  
Marcos Intaglietta ◽  
Paul C. Johnson

Previous studies in skeletal muscle of the dog and cat have shown that venous vascular resistance changes inversely with blood flow and may be due mainly to red blood cell aggregation, a phenomenon present in these species. To determine whether red blood cell axial migration and sedimentation contribute to this effect, we viewed either vertically or horizontally oriented venules of the rat spinotrapezius muscle with a horizontally oriented microscope during acute arterial pressure reduction. With normal (nonaggregating) rat blood, reduction of arterial pressure did not significantly change the relative diameter of the red blood cell column with respect to the venular wall. After induction of red blood cell aggregation in the rat by infusion of Dextran 500, red blood cell column diameter decreased up to 35% at low pseudoshear rates (below ∼5 s−1); the magnitude was independent of venular orientation. In vertically oriented venules, the plasma layer was symmetrical, whereas in horizontally oriented venules, the plasma layer formed near the upper wall. We conclude that, although red blood cell axial migration and sedimentation develop in vivo, they occur only for larger flow reductions than are needed to elicit changes in venous resistance.


1986 ◽  
Vol 250 (5) ◽  
pp. H828-H837 ◽  
Author(s):  
S. D. House ◽  
P. C. Johnson

Whole organ studies suggest that venous resistance increases as blood flow falls and decreases when blood flow increases. In experiments on skeletal muscle we tested the hypotheses that these resistance changes may be due to changes in venous diameter, changes in the number of venules with blood flow, and/or changes in the shear rate of blood in venules. The hypotheses were tested by measuring diameter and red cell velocity in cat sartorius muscle venules (7–200 microns diam) during arterial pressure reduction and muscle contraction. There was no observable change in venular diameter and an insignificant change in the number of venules with blood flow during these perturbations. There was a significant decrease in the normalized velocity (bulk velocity/vessel diameter) of blood from a mean of 13 s-1 under control conditions to 5 s-1 during arterial pressure reduction to 20 mmHg. Combining these blood velocity data with published in vivo viscosity data, it is deduced that apparent blood viscosity in venules would increase 100% when blood flow was reduced 60%. During postcontraction hyperemia the normalized velocity of blood in venules increased from 16 to 38 s-1, suggesting that apparent blood viscosity in venules would fall 54%.


2003 ◽  
Vol 285 (1) ◽  
pp. R50-R56 ◽  
Author(s):  
Feng Wu ◽  
John X. Wilson ◽  
Karel Tyml

Inducible nitric oxide synthase (iNOS) expression in blood vessels contributes to the vascular hyporeactivity characteristic of sepsis. Our previous work demonstrated in vitro that ascorbate inhibits iNOS expression in lipopolysaccharide- and interferon-γ-stimulated skeletal muscle endothelial cells (ECs) through an antioxidant mechanism. The present study evaluated in vivo the hypothesis that administration of ascorbate decreases oxidative stress, prevents endothelial iNOS expression, and improves vascular reactivity in septic skeletal muscle. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Plasma nitrite and nitrate (NOx) levels were elevated by 6 h after CLP. Prior ascorbate bolus injection (200 mg/kg body wt iv) blocked the elevation of plasma NOx and abolished the expression of iNOS protein and activity in the septic skeletal muscle. We also demonstrated that iNOS mRNA determined by RT-PCR was induced in the microvascular ECs of the muscle at 3 h after CLP. This induction was attenuated by prior ascorbate administration. Ascorbate inhibition of iNOS expression was associated with decreased oxidant levels in the septic muscle. Moreover, ascorbate administration restored partially the baseline arterial pressure and preserved completely the microvascular constriction and arterial pressure responses to norepinephrine in CLP mice. These results suggest that early administration of ascorbate may be a valuable adjunct treatment of sepsis.


1985 ◽  
Vol 59 (1) ◽  
pp. 56-63 ◽  
Author(s):  
C. L. Stebbins ◽  
J. C. Longhurst

We examined the cardiovascular response to bradykinin stimulation of skeletal muscle afferents and the effect of prostaglandins on this response. Intra-arterial injection of 1 microgram bradykinin into the gracilis muscle of cats reflexly increased mean arterial pressure by 16 +/- 2 mmHg, left ventricular end-diastolic pressure by 1.6 +/- 0.6 mmHg, maximal dP/dt by 785 +/- 136 mmHg/s, heart rate by 11 +/- 2 beats/min, and mean aortic flow by 22 +/- 3 ml/min. The hemodynamic responses were abolished following denervation of the gracilis muscle. The increases in mean arterial pressure and maximal dP/dt were reduced by 68 and 45%, respectively, following inhibition of prostaglandin synthesis with indomethacin (2–8 mg/kg iv). Treatment with prostaglandin E2 (PGE2, 15–25 micrograms ia) restored the initial increase in mean arterial pressure, but not dP/dt, caused by bradykinin stimulation. Injection of PGE2 (15–30 micrograms ia) into the gracilis, without prior treatment with indomethacin, augmented the bradykinin-induced increases in mean arterial pressure and dP/dt. We conclude that small doses of bradykinin injected into skeletal muscle are capable of reflexly activating the cardiovascular system and that prostaglandins are necessary for the full manifestation of the corresponding hemodynamic response. The pattern of hemodynamic adjustment following bradykinin injection into skeletal muscle is very similar to that induced by static exercise. Therefore, it is possible that intense exercise provides a stimulus for this bradykinin-induced reflex in vivo.


2001 ◽  
Vol 90 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Leonardo C. Clavijo ◽  
Mary B. Carter ◽  
Paul J. Matheson ◽  
Mark A. Wilson ◽  
William B. Wead ◽  
...  

In vivo pulmonary arterial catheterization was used to determine the mechanism by which platelet-activating factor (PAF) produces pulmonary edema in rats. PAF induces pulmonary edema by increasing pulmonary microvascular permeability (PMP) without changing the pulmonary pressure gradient. Rats were cannulated for measurement of pulmonary arterial pressure (Ppa) and mean arterial pressure. PMP was determined by using either in vivo fluorescent videomicroscopy or the ex vivo Evans blue dye technique. WEB 2086 was administered intravenously (IV) to antagonize specific PAF effects. Three experiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAF induced systemic hypotension with a decrease in Ppa. PMP increased after IV PAF in a dose-related manner. Topical PAF increased PMP but decreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa (50 ± 3%) increased during E. coli bacteremia. PAF-receptor blockade prevents changes in Ppa and PMP after both topical PAF and E. coli bacteremia. PAF, which has been shown to mediate pulmonary edema in prior studies, appears to act in the lung by primarily increasing microvascular permeability. The presence of PAF might be prerequisite for pulmonary vascular constriction during gram-negative bacteremia.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Bruno Paun ◽  
Daniel García Leon ◽  
Alex Claveria Cabello ◽  
Roso Mares Pages ◽  
Elena de la Calle Vargas ◽  
...  

Abstract Background Skeletal muscle injury characterisation during healing supports trauma prognosis. Given the potential interest of computed tomography (CT) in muscle diseases and lack of in vivo CT methodology to image skeletal muscle wound healing, we tracked skeletal muscle injury recovery using in vivo micro-CT in a rat model to obtain a predictive model. Methods Skeletal muscle injury was performed in 23 rats. Twenty animals were sorted into five groups to image lesion recovery at 2, 4, 7, 10, or 14 days after injury using contrast-enhanced micro-CT. Injury volumes were quantified using a semiautomatic image processing, and these values were used to build a prediction model. The remaining 3 rats were imaged at all monitoring time points as validation. Predictions were compared with Bland-Altman analysis. Results Optimal contrast agent dose was found to be 20 mL/kg injected at 400 μL/min. Injury volumes showed a decreasing tendency from day 0 (32.3 ± 12.0mm3, mean ± standard deviation) to day 2, 4, 7, 10, and 14 after injury (19.6 ± 12.6, 11.0 ± 6.7, 8.2 ± 7.7, 5.7 ± 3.9, and 4.5 ± 4.8 mm3, respectively). Groups with single monitoring time point did not yield significant differences with the validation group lesions. Further exponential model training with single follow-up data (R2 = 0.968) to predict injury recovery in the validation cohort gave a predictions root mean squared error of 6.8 ± 5.4 mm3. Further prediction analysis yielded a bias of 2.327. Conclusion Contrast-enhanced CT allowed in vivo tracking of skeletal muscle injury recovery in rat.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1791
Author(s):  
Rosa Scala ◽  
Fatima Maqoud ◽  
Nicola Zizzo ◽  
Giuseppe Passantino ◽  
Antonietta Mele ◽  
...  

(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10−5 M in SUR2wt/AV and 8.6 ± 0.4 × 10−6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] “knock-in” mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.


Sign in / Sign up

Export Citation Format

Share Document