Effect of mucin on the bioavailability of tetracycline from the gastro-intestinal tract: in vivo, in vitro correlations

1974 ◽  
Vol 26 (S1) ◽  
pp. 64P-65P ◽  
Author(s):  
B. W. BARRY ◽  
M. P. BRAYBROOKS
2000 ◽  
Vol 2000 ◽  
pp. 57-57 ◽  
Author(s):  
A.M. Roosenstein ◽  
J.W. Cone ◽  
A.C. Beynen

Because feed evaluation of new feeds for animal nutrition requires in vivo trials, which can be expensive, harmful to the animals and time consuming, alternatives have been developed. in vitro techniques are used commonly for many farm animal species. However, in vitro data do not always predict in vivo data satisfactorily. As many processes in the gastro intestinal tract of different animal species are comparable also the digestibility of feeds may be comparable. The aim of this research was to identify similarities in digestibility coefficients between different farm animal species. If it is possible to use in vivo data of one animal species for the evaluation of alternative techniques for another species, this would enlarge existing data sets, accelerate the validation of new techniques and reduce the number of harmful animal trials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1422
Author(s):  
Alexandro Barbosa de Souza ◽  
Marco Vinícius Chaud ◽  
Thais Francine Alves ◽  
Juliana Ferreira de Souza ◽  
Maria Helena Andrade Santana

Oral hyaluronic acid (HA) is a ubiquitous biopolymer that has gained attention as a treatment for local or systemic diseases. Here, we prepared and characterized structures of free HA (f-HA) with a high (>105 Da), intermediate (≤105 Da), and low (≤104 Da) average molar mass (MM); nanoparticles crosslinked with adipic dihydrazide (n-HA); and mixed formulations (mixed-HA) containing f-HA and n-HA. MM distribution determined the structure, hydrodynamic diameter, and zeta potential of the f-HAs. Crosslinking changed the physicochemical properties in n-HA. In vitro tack adhesion assays, using mucin tablets or a viable rat intestinal mucosa, showed better mucoadhesion with f-HA (intermediate MM) and mixed-HA (25% n-HA), especially in the jejunum segment. High MM f-HA presented negligible mucoadhesion. n-HA showed the deepest diffusion into the porous of the membranes. In vivo results showed that, except for high MM f-HA, there is an inverse relationship between rheological changes in the intestinal membrane macerates resulting from mucoadhesion and the effective intestinal permeability that led to blood clearance of the structures. We conclude that the n-HA formulations are promising for targeting other tissues, while formulations of f-HA (intermediate MM) and mixed-HA are better for treating dysbiosis.


2001 ◽  
Vol 67 (10) ◽  
pp. 4657-4661 ◽  
Author(s):  
Thorsten Lemke ◽  
Theo van Alen ◽  
Johannes H. P. Hackstein ◽  
Andreas Brune

ABSTRACT In the intestinal tracts of animals, methanogenesis from CO2 and other C1 compounds strictly depends on the supply of electron donors by fermenting bacteria, but sources and sinks of reducing equivalents may be spatially separated. Microsensor measurements in the intestinal tract of the omnivorous cockroachBlaberus sp. showed that molecular hydrogen strongly accumulated in the midgut (H2 partial pressures of 3 to 26 kPa), whereas it was not detectable (<0.1 kPa) in the posterior hindgut. Moreover, living cockroaches emitted large quantities of CH4 [105 ± 49 nmol (g of cockroach)−1h−1] but only traces of H2. In vitro incubation of isolated gut compartments, however, revealed that the midguts produced considerable amounts of H2, whereas hindguts emitted only CH4 [106 ± 58 and 71 ± 50 nmol (g of cockroach)−1 h−1, respectively]. When ligated midgut and hindgut segments were incubated in the same vials, methane emission increased by 28% over that of isolated hindguts, whereas only traces of H2 accumulated in the headspace. Radial hydrogen profiles obtained under air enriched with H2 (20 kPa) identified the hindgut as an efficient sink for externally supplied H2. A cross-epithelial transfer of hydrogen from the midgut to the hindgut compartment was clearly evidenced by the steep H2 concentration gradients which developed when ligated fragments of midgut and hindgut were placed on top of each other—a configuration that simulates the situation in vivo. These findings emphasize that it is essential to analyze the compartmentalization of the gut and the spatial organization of its microbiota in order to understand the functional interactions among different microbial populations during digestion.


1936 ◽  
Vol 14 (1) ◽  
pp. 21-40 ◽  
Author(s):  
D. A. Berberian

Experimentsin vivoandin vitroare reported on the action of digestive juices of various animals on the scolices ofE. granulosus. Inin vitrostudies, scolices ofE. granulosuswere placed in the digestive juices of different animals, incubated at 37°C., and the digestive action of the fluids was studied by examining portions of the material under the microscope.In vivoexperiments were carried out on kittens, rats and rabbits. These animals were fed large quantities of scolices of hydatid cyst membranes and they were killed at definite time intervals and their intestinal tract was carefully examined for scolices.Gastric juice of rats, dogs, cats, sheep and cattle did not digest scolices. The action of the gastric juice of rabbits begins late and proceeds slowly. Human gastric juice causes incomplete digestion and acts only on the evaginated scolices.The intestinal juices of man, rats, rabbits, sheep and cattle are able to digest scolices completely, whereas the intestinal juice of dogs and cats is inactive. In spite of the fact that cat intestinal juice is inactive, kittens are found to be slightly susceptible. Since they suffer only relatively light infestation and the rate of development is retarded, we would classify the cat as an “abnormal” host toE. granulosus.Time of evagination of scolices from a single cyst or from cysts from different animals is variable. Some scolices evaginate readily, others more slowly and still others fail to evaginate completely.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Elisa Colombo ◽  
Enrico Sangiovanni ◽  
Mario Dell'Agli

Several biological activities of pomegranate have been widely described in the literature, but the anti-inflammatory effect in the gastrointestinal tract has not been reviewed till now. The aim of the present paper is to summarize the evidence for or against the efficacy of pomegranate for coping with inflammatory conditions of the gastro-intestinal tract. The paper has been organized in three parts: (1) the first one is devoted to the modifications of pomegranate active compounds in the gastro-intestinal tract; (2) the second one considering the literature regarding the anti-inflammatory effect of pomegranate at gastric level; (3) the third part considers the anti-inflammatory effect of pomegranate in the gut.In vivostudies performed on the whole fruit or juice, peel, and flowers demonstrate antiulcer effect in a variety of animal models. Ellagic acid was the main responsible for this effect, although other individual ellagitannins could contribute to the biological activity of the mixture. Different preparations of pomegranate, including extracts from peels, flowers, seeds, and juice, show a significant anti-inflammatory activity in the gut. No clinical studies have been found, thus suggesting that future clinical studies are necessary to clarify the beneficial effects of pomegranate in the gastrointestinal tract.


2006 ◽  
Vol 80 (4) ◽  
pp. 341-348 ◽  
Author(s):  
N. Morimoto ◽  
M. Korenaga ◽  
K. Yagyu ◽  
N. Kagei ◽  
M. Fujieda ◽  
...  

AbstractUnusual non-human parasitic nematodes and eggs were detected in the faeces of an 8-year-old Japanese female suffering from Henoch-Schönlein purpura. The worms were adult female rhabditiform nematodes measuring 325.6–441.2 μm in length and 18.3–26.5 μm in width. One pair of the labia oris was notched with many spiny projections, while the other pair was strongly curved outwards. The worms were identified using light and scanning electron microscopy as the free-living nematode Diploscapter coronata (Cobb) based on their characteristic morphology. The patient's faeces containing worms and eggs were cultured using a filter-paper culture technique and after 7 days of culture, male as well as female worms were recovered. Worm survival time and hatchability of the eggs were examined in vitro after treatment with an artificial gastric or intestinal fluid. Although adult worms survived for less than one minute, eggs hatched after treatment with artificial gastric fluid. This suggests that eggs accidentally ingested or produced by adult D. coronata could develop in the human gastro-intestinal tract. Some morphological features of male D. coronata are also described.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Helmut Hirt ◽  
Kerryl E. Greenwood-Quaintance ◽  
Melissa J. Karau ◽  
Lisa M. Till ◽  
Purna C. Kashyap ◽  
...  

ABSTRACT Cell-cell communication mediated by peptide pheromones (cCF10 [CF]) is essential for high-frequency plasmid transfer in vitro in Enterococcus faecalis. To examine the role of pheromone signaling in vivo, we established either a CF-producing (CF+) recipient or a recipient producing a biologically inactive variant of CF (CF− recipient) in a germfree mouse model 3 days before donor inoculation and determined transfer frequencies of the pheromone-inducible plasmid pCF10. Plasmid transfer was detected in the upper and middle sections of the intestinal tract 5 h after donor inoculation and was highly efficient in the absence of antibiotic selection. The transconjugant/donor ratio reached a maximum level approaching 1 on day 4 in the upper intestinal tract. Plasmid transfer was significantly lower with the CF− recipient. While rescue of the CF− mating defect by coculture with CF+ recipients is easily accomplished in vitro, no extracellular complementation occurred in vivo. This suggests that most pheromone signaling in the gut occurs between recipient and donor cells in very close proximity. Plasmid-bearing cells (donors plus transconjugants) steadily increased in the population from 0.1% after donor inoculation to about 10% at the conclusion of the experiments. This suggests a selective advantage of pCF10 carriage distinct from antibiotic resistance or bacteriocin production. Our results demonstrate that pheromone signaling is required for efficient pCF10 transfer in vivo. In the absence of CF+ recipients, a low level of transfer to CF− recipients occurred in the gut. This may result from low-level host-mediated induction of the donors in the gastrointestinal (GI) tract, similar to that previously observed in serum. IMPORTANCE Horizontal gene transfer is a major factor in the biology of Enterococcus faecalis, an important nosocomial pathogen. Previous studies showing efficient conjugative plasmid transfer in the gastrointestinal (GI) tracts of experimental animals did not examine how the enterococcal sex pheromone response impacts the efficiency of transfer. Our study demonstrates for the first time pheromone-enhanced, high-frequency plasmid transfer of E. faecalis plasmid pCF10 in a mouse model in the absence of antibiotic or bacteriocin selection. Pheromone production by recipients dramatically increased plasmid transfer in germfree mice colonized initially with recipients, followed by donors. The presence of a coresident community of common gut microbes did not significantly reduce in vivo plasmid transfer between enterococcal donors and recipients. In mice colonized with enterococcal recipients, we detected plasmid transfer in the intestinal tract within 5 h of addition of donors, before transconjugants could be cultured from feces. Surprisingly, pCF10 carriage provided a competitive fitness advantage unrelated to antibiotic resistance or bacteriocin production.


Sign in / Sign up

Export Citation Format

Share Document