AQUEOUS CELLULOSIC FILM COATING OF TABLETS

1978 ◽  
Vol 30 (S1) ◽  
pp. 88P-88P ◽  
Author(s):  
J. E. Hogan
Keyword(s):  
Author(s):  
Sarika Pundir ◽  
Ashutosh Badola

In the present study we have formulated (F1 to F6) matrix tablets of atenolol and indapamide for the management of hypertension. As in simultaneous estimation of these drugs it was found that a confined release can be formulated. In the formulation of SR matrix tablet by using different concentration of delayed release agent DCP and pregelatinized starch as disintegrant we prepared tablets by wet granulation method. For sustained release action HPMC polymers were used for film coating. Preformulation studies were performed prior to compression. The compressed SR matrix tablets were evaluated for weight variation, hardness, friability, drug content, disintegration time and in vitro drug release using USP dissolution apparatus type 2 (paddle). It was found that the optimized formulation showed 49.33%, 48.90%, 48.52%, 47.65%, 46.84% and 46.51% release for atenolol in 12 hours respectively. However, indapamide released 49.62%, 49.39%, 48.72%, 48.27%, 47.59% and 47.36% at the end of 12 hr. The IR spectrum study revealed that there is no disturbance in the principal peaks of pure drugs atenolol and indapamide. This confirms the integrity of pure drugs and no incompatibility of them with excipients. The stability studies were carried out for the optimized batch for one months and it showed satisfactory results. The kinetic studies of the formulations revealed that diffusion is the predominant mechanism of drug and release follows Zero-order, Super case II transport.


2008 ◽  
Vol 54 (10) ◽  
pp. 861-867 ◽  
Author(s):  
Kanchalee Jetiyanon ◽  
Sakchai Wittaya-Areekul ◽  
Pinyupa Plianbangchang

The plant growth-promoting rhizobacterium Bacillus cereus RS87 was previously reported to promote plant growth in various crops in both greenhouse and field trials. To apply as a plant growth promoting agent with practical use, it is essential to ease the burden of routine preparation of a fresh suspension of strain RS87 in laboratory. The objectives of this study were to investigate the feasibility of film-coating seeds with B. cereus RS87 spores for early plant growth enhancement and to reveal the indoleacetic acid (IAA) production released from strain RS87. The experiment consisted of the following 5 treatments: nontreated seeds, water-soaked seeds, film-coated seeds, seeds soaked with vegetative cells of strain RS87, and film-coated seeds with strain RS87 spores. Three experiments were conducted separately to assess seed emergence, root length, and plant height. Results showed that both vegetative cells and spores of strain RS87 significantly promoted (P ≤ 0.05) seed emergence, root length and plant height over the control treatments. The strain RS87 also produced IAA. In conclusion, the film coating of seeds with spores of B. cereus RS87 demonstrated early plant growth enhancement as well as seeds using their vegetative cells. IAA released from strain RS87 would be one of the mechanisms for plant growth enhancement.


2021 ◽  
Vol 640 (5) ◽  
pp. 052022
Author(s):  
C E Beloglazova ◽  
G E Rysmukhambetova ◽  
L V Karpunina ◽  
M V Zabelina
Keyword(s):  

Author(s):  
Florian Ponzio ◽  
Julien Kelber ◽  
Laura Birba ◽  
Kamal Rekab ◽  
Vincent Ritleng ◽  
...  

Author(s):  
E E Suslov ◽  
A S Larionov ◽  
S B Kislitsin ◽  
I I Chernov ◽  
M S Staltsov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document