Abscisic acid response to water status in Dactylis glomerata differs with expression of summer dormancy

2020 ◽  
Vol 206 (5) ◽  
pp. 607-618
Author(s):  
Mark R. Norton ◽  
Lisa Xian ◽  
Jesse N. Kalic ◽  
Trijntje Hughes ◽  
Frank Gubler

Horticulturae ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 12
Author(s):  
Massimiliano Cocco ◽  
Luca Mercenaro ◽  
Mauro Lo Cascio ◽  
Giovanni Nieddu

Beyond climatic conditions, qualitative performance is led by the intrinsic characteristics of the genotype. The aim of this study was to investigate the relationship between vine water status and exogenous abscisic acid (ABA) application on berry composition of the cultivars Cannonau, Merlot and Sangiovese. The experiment, carried out in 2016 and 2017, consisted of comparing two levels of irrigation treatments, full irrigation versus a non-irrigation treatment. Within each treatment, two sub-treatments were set up: (i) 4 mL L−1 of exogenous ABA applied at veraison to clusters only and subsequently repeated after six days; (ii) a control (untreated vines). The application of different irrigation regimes confirmed that the response to water stress is highly cultivar-dependent. Berry composition was influenced differently among cultivars by water stress. In terms of metabolites, positive influences were observed with Cannonau. No significant effects were observed by spraying exogenous ABA directly on grapes. Moreover, no significant interactions were found between the application of water stress and ABA. Exogenous ABA application did not appear to be a viticultural practice capable of influencing must composition in environments characterized by severe environmental conditions such as heat and drought.



1998 ◽  
Vol 140 (3) ◽  
pp. 451-460 ◽  
Author(s):  
FLORENCE VOLAIRE ◽  
HENRY THOMAS ◽  
NADIA BERTAGNE ◽  
EMMANUELLE BOURGEOIS ◽  
MARIE-FRANCOISE GAUTIER ◽  
...  


Crop Science ◽  
2011 ◽  
Vol 51 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Kristen A. Leach ◽  
Lindsey G. Hejlek ◽  
Leonard B. Hearne ◽  
Henry T. Nguyen ◽  
Robert E. Sharp ◽  
...  


2018 ◽  
Vol 24 (2) ◽  
pp. 103-108
Author(s):  
Tania Pires Da Silva ◽  
Fernanda Ferreira Araujo ◽  
Fernando Luiz Finger

The objective of this study was to evaluate the growth regulators action on the senescence of wild pansy flowers. In the first experiment, floral stems were treated with ethylene for 24 hours at concentrations of 0.1, 1.0, 10, 100 and 1000 μL L-1 and control without the hormone. In a second experiment, the flowers were immersed in solutions of abscisic acid (ABA) containing 5, 20, 50 and 100 μM for one minute and control with water. In a third experiment, 1-methylcyclopropene (1-MCP) was applied at concentrations of 0.5, 1.0 and 1.5 μL L-1 and control without the chemical. In a fourth experiment, 1-MCP and ethylene were applied, where 1-MCP was first applied followed by ethylene. After the treatments with 1-MCP and ethylene, the floral stems were removed from the hermetic chambers and kept in a vessel containing distilled water at 25 °C, 10 μmol m-2 s- 1 white fluorescent light and 50-70% relative humidity as for the ABA treatment. Flowers treated with ethylene did not present significant differences among the concentrations for visual senescence, showing evidence that this flower is not sensitive to ethylene. Treatment with 1000 μL L-1 of ethylene led to a slightly higher fresh weight loss than other treatments, which had a loss of about 33% at end of the experiment. For the ABA treatment, the flowers showed similar fresh weight loss among the different treatments; however, higher concentrations induced slight senescence of flowers. The use of 1-MCP increased the longevity of wild pansy flowers. These results show that 1-MCP is beneficial in maintaining the flower water status, even in the presence of exogenous ethylene, although ethylene may not be directly involved in the senescence of wild pansy flowers.



1992 ◽  
Vol 43 (5) ◽  
pp. 671-679 ◽  
Author(s):  
W. E. FINCH-SAVAGE ◽  
H A. CLAY ◽  
P S. BLAKE ◽  
G. BROWNING




1991 ◽  
Vol 18 (1) ◽  
pp. 17 ◽  
Author(s):  
Z Kefu ◽  
R Munns ◽  
RW King

Exposing barley and cotton plants to 75 mol m-3 NaCl reduced transpiration and increased abscisic acid (ABA) levels in leaves, roots and xylem sap. Exposing saltbush (Atriplex spongiosa) plants to 75 mol m-3 NaCI, at which concentration they grow best, did not affect transpiration or ABA levels but when the NaCl was increased to 150 mol m-3 transpiration fell and ABA levels rose. ABA levels in leaves were high in salt-treated barley and saltbush even when the leaf water status was raised by pressurising the roots. These responses indicate that an increased leaf ABA level was not triggered by leaf water deficit, but by the root's response to the salinity. The flux of ABA in the xylem sap of the three species was more than enough to account for the amount of ABA in leaves, in the presence and absence of salinity. This suggests that the roots may be the source of at least part of the ABA found in leaves.



1977 ◽  
Vol 4 (2) ◽  
pp. 225 ◽  
Author(s):  
RW King ◽  
LT Evans

A brief, 8-h water stress during the induction of flowering in L. temulentum reduces the flowering response, the more so the greater the stress. Water stress also affected leaf photosynthetic rate, relative water content of leaves and leaf elongation. Water stress was most inhibitory to flowering when applied during the period of high-intensity light at the beginning of the one long day. The abscisic acid (ABA) content of leaves increased up to 30-fold during the imposition of water stress and fell rapidly after stress was relieved, regardless of when the stress was imposed. The greater the stress, the higher was the level of ABA in leaves and the greater was the inhibition of flowering. The ABA content of apices also rose in response to water stress, in some cases during the stress treatment but usually 8-22 h later. Flowering was inhibited when apical ABA contents were high at the end of the long day. Although water stress may influence the flowering of plants in several ways, these experiments suggest that water stress during the long day induction of L. temulentum inhibits flowering by raising the content of ABA at the shoot apex during floral evocation.



Sign in / Sign up

Export Citation Format

Share Document