scholarly journals Effects of Vine Water Status and Exogenous Abscisic Acid on Berry Composition of Three Red Wine Grapes Grown under Mediterranean Climate

Horticulturae ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 12
Author(s):  
Massimiliano Cocco ◽  
Luca Mercenaro ◽  
Mauro Lo Cascio ◽  
Giovanni Nieddu

Beyond climatic conditions, qualitative performance is led by the intrinsic characteristics of the genotype. The aim of this study was to investigate the relationship between vine water status and exogenous abscisic acid (ABA) application on berry composition of the cultivars Cannonau, Merlot and Sangiovese. The experiment, carried out in 2016 and 2017, consisted of comparing two levels of irrigation treatments, full irrigation versus a non-irrigation treatment. Within each treatment, two sub-treatments were set up: (i) 4 mL L−1 of exogenous ABA applied at veraison to clusters only and subsequently repeated after six days; (ii) a control (untreated vines). The application of different irrigation regimes confirmed that the response to water stress is highly cultivar-dependent. Berry composition was influenced differently among cultivars by water stress. In terms of metabolites, positive influences were observed with Cannonau. No significant effects were observed by spraying exogenous ABA directly on grapes. Moreover, no significant interactions were found between the application of water stress and ABA. Exogenous ABA application did not appear to be a viticultural practice capable of influencing must composition in environments characterized by severe environmental conditions such as heat and drought.

Crop Science ◽  
2011 ◽  
Vol 51 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Kristen A. Leach ◽  
Lindsey G. Hejlek ◽  
Leonard B. Hearne ◽  
Henry T. Nguyen ◽  
Robert E. Sharp ◽  
...  

1977 ◽  
Vol 4 (2) ◽  
pp. 225 ◽  
Author(s):  
RW King ◽  
LT Evans

A brief, 8-h water stress during the induction of flowering in L. temulentum reduces the flowering response, the more so the greater the stress. Water stress also affected leaf photosynthetic rate, relative water content of leaves and leaf elongation. Water stress was most inhibitory to flowering when applied during the period of high-intensity light at the beginning of the one long day. The abscisic acid (ABA) content of leaves increased up to 30-fold during the imposition of water stress and fell rapidly after stress was relieved, regardless of when the stress was imposed. The greater the stress, the higher was the level of ABA in leaves and the greater was the inhibition of flowering. The ABA content of apices also rose in response to water stress, in some cases during the stress treatment but usually 8-22 h later. Flowering was inhibited when apical ABA contents were high at the end of the long day. Although water stress may influence the flowering of plants in several ways, these experiments suggest that water stress during the long day induction of L. temulentum inhibits flowering by raising the content of ABA at the shoot apex during floral evocation.


The complex responses of stomata which provide protection for land plants against excessive water loss are best understood if we consider them as occupying two lines of defence. The first line of defence consists of immediate responses to factors of the aerial environment, especially carbon dioxide concentration and water vapour pressure deficit, which ensure that the rate of transpiration is regulated to a level which can be supported by water uptake through the roots in moist soil. When the soil becomes dry, further controls become necessary, and the second line of defence comes into operation. A ceiling is imposed on the extent to which stomata can open, and an increase in the efficiency of water use is achieved, though at the expense of some reduction in the rate of photosynthesis. A sesquiterpenoid, abscisic acid (ABA) plays a major part in the second line of defence. It is contained in the mesophyll chloroplasts in leaves of well watered plants and is released when the water potential falls; the synthesis of new ABA is also induced by water stress. Movement of ABA from the mesophyll to the guard cells is assumed to take place, because the chloroplasts of guard cells appear to be unable to form ABA in response to water stress. We suggest that farnesol, another sesquiterpenoid hitherto considered to have a separate role as a regulator of transpiration, is the agent responsible for altering the permeability of chloroplast envelope membranes, allowing the release of ABA into the cytoplasm. The closure of stomata induced by ABA appears to be part of a series of integrated responses throughout the plant which helps to maintain turgor and growth when water is in short supply.


Irriga ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 705-717 ◽  
Author(s):  
Amanda Silva Costa ◽  
Antonio Lucineudo Oliveira Freire ◽  
Ivonete Alves Bakke ◽  
Francisco Hevilásio Freire Pereira

RESPOSTAS FISIOLÓGICAS E BIOQUÍMICAS DE PLANTAS DE AROEIRA (Myracrodruon urundeuva Allemão) AO DÉFICIT HÍDRICO E POSTERIOR RECUPERAÇÃO  AMANDA SILVA COSTA1; ANTONIO LUCINEUDO DE OLIVEIRA FREIRE2; IVONETE ALVES BAKKE3 E FRANCISCO HEVILÁSIO FREIRE PEREIRA4 1Engenheira Florestal - Mestre em Ciências Florestais pelo Programa de Pós-Graduação em Ciências Florestais – Unidade Acadêmica de Engenharia Florestal - Universidade Federal de Campina Grande/UFCG, Patos, PB, Brasil, [email protected] Agrônomo – Doutor - Unidade Acadêmica de Engenharia Florestal - Universidade Federal de Campina Grande/UFCG, Patos, PB, Brasil, [email protected] Florestal – Doutora - Unidade Acadêmica de Engenharia Florestal - Universidade Federal de Campina Grande/UFCG, Patos, PB, Brasil, [email protected] Agrônomo – Doutor - Unidade Acadêmica de Ciências Agrárias - Universidade Federal de Campina Grande/UFCG, Pombal, PB, Brasil, [email protected]  1 RESUMO A aroeira (Myracrodruon urundeuva Allemão) vem sendo explorada de forma desordenada, ocasionando redução drástica no número de indivíduos, fazendo com que passasse a fazer parte da lista de espécies ameaçadas de extinção, sendo oportuna a prioridade da conservação. No entanto, pouco se sabe a respeito de aspectos relacionados à sua fisiologia, principalmente acerca dos mecanismos fisiológicos que determinam sua tolerância à seca. O objetivo deste trabalho foi avaliar as trocas gasosas e o acúmulo de solutos orgânicos em plantas jovens de aroeira submetidas ao déficit hídrico e posterior recuperação. Plantas com doze meses de idade, mantidas em sacos plásticos pretos, contendo 5 kg de uma mistura de solo e esterco bovino (2:1) foram submetidas aos tratamentos irrigados (controle) e de déficit hídrico, o qual foi imposto através da suspensão da irrigação. Decorridos 12 dias de déficit hídrico, as plantas foram reidratadas. As plantas sob déficit hídrico apresentaram teor relativo de água de 70% ao final do período de estresse. O déficit hídrico promoveu redução progressiva na condutância estomática, na transpiração, na fotossíntese líquida e na eficiência no uso da água das plantas. A concentração intercelular de CO2 e as concentrações foliares de açúcares totais e aminoácidos solúveis totais aumentaram. Após a retomada da irrigação, ocorreu rápida recuperação no teor relativo de água, mas a recuperação da condutância estomática e da fotossíntese líquida ocorreu mais lentamente. As plantas de aroeira foram capazes de recuperar o status hídrico e o funcionamento do mecanismo estomático e fotossintético após a recuperação, demonstrando tolerância ao déficit hídrico. Palavras-chave: Fotossíntese, solutos orgânicos, trocas gasosas, tolerância à seca.  COSTA, A, S.; FREIRE, A. L. O.; BAKKE, I. A.; PEREIRA, F. H. R.PHYSIOLOGICAL AND BIOCHEMICAL RESONSES OF Myracrodruon urundeuva Allemão  PLANTS TO WATER DEFICIT AND REHYDRATION   2 ABSTRACT Myracrodruon urundeuva Allemao plants have been explored in a disorderly way, which   has caused   a sharp reduction in the number of individuals, and  put  them on  the list of endangered species. Therefore, their conservation became timely priority. However, little is known about aspects concerning their physiology, mainly those related to physiological mechanisms which determine their drought tolerance.   The objective of this study was to evaluate the stomatal behavior and accumulation of organic solutes in young plants subjected to water stress and subsequent rehydration.  Twelve  month-old  plants, kept in black plastic bags, with 5 kg of a mixture of soil and bovine manure (2:1) were subjected to irrigation treatment (control) and water deficit by irrigation withdrawal. After 12 day-water deficit, plants were rehydrated.  Plants under water deficit showed relative water content of 70% at the end of the stress. Water stress caused progressive reduction in stomatal conductance, transpiration,  photosynthesis rate  and water use efficiency of plants. Intercellular concentration of CO2   and leaf concentrations of total sugar and soluble amino acids increased.   After resumption of irrigation, rapid recovery of relative content of water was observed in the second day, but recovery of the stomatal conductance and photosynthesis rate was slower.  Plants were able to recover   the water status and functioning of the stomatal and photosynthetic mechanisms after rehydration, which shows their tolerance to water stress. Keywords: Photosynthesis, organic solutes, gas exchanges, drought  tolerance. 


2021 ◽  
Vol 22 (19) ◽  
pp. 10242
Author(s):  
Paco Romero ◽  
María Teresa Lafuente

The phytohormone abscisic acid (ABA) is a major regulator of fruit response to water stress, and may influence cuticle properties and wax layer composition during fruit ripening. This study investigates the effects of ABA on epicuticular wax metabolism regulation in a citrus fruit cultivar with low ABA levels, called Pinalate (Citrus sinensis L. Osbeck), and how this relationship is influenced by water stress after detachment. Harvested ABA-treated fruit were exposed to water stress by storing them at low (30–35%) relative humidity. The total epicuticular wax load rose after fruit detachment, which ABA application decreased earlier and more markedly during fruit-dehydrating storage. ABA treatment changed the abundance of the separated wax fractions and the contents of most individual components, which reveals dependence on the exposure to postharvest water stress and different trends depending on storage duration. A correlation analysis supported these responses, which mostly fitted the expression patterns of the key genes involved in wax biosynthesis and transport. A cluster analysis indicated that storage duration is an important factor for the exogenous ABA influence and the postharvest environment on epicuticular wax composition, cuticle properties and fruit physiology. Dynamic ABA-mediated reconfiguration of wax metabolism is influenced by fruit exposure to water stress conditions.


OENO One ◽  
2017 ◽  
Vol 51 (1) ◽  
Author(s):  
Vivian Zufferey ◽  
Jean-Laurent Spring ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
...  

<p><strong>Aims : </strong>The aims of this study were to investigate the physiological behavior (plant hydraulics, gas exchange) of the cultivar Pinot Noir in the field under progressively increasing conditions of water stress and analyze the effects of drought on grape and wine quality.</p><p><strong>Methods and results : </strong>Grapevines of the variety <em>Vitis vinifera</em> L. cv. Pinot Noir (clone 9-18, grafted onto 5BB) were subjected to different water regimes (irrigation treatments) over the growing season. Physiological indicators were used to monitor plant water status (leaf and stem water potentials and relative carbon isotope composition (d<sup>13</sup>C) in must sugars). Leaf gas exchange (net photosynthesis A and transpiration E), leaf stomatal conductance (gs), specific hydraulic conductivity in petioles (K<sub>petiole</sub>), yield components, berry composition at harvest, and organoleptic quality of wines were analyzed over a 7-year period, between 2009 and 2015, under relatively dry conditions in the canton of Wallis, Switzerland. A progressively increasing water deficit, observed throughout the season, reduced the leaf gas exchange (A and E) and gs in non-irrigated vines. The intrinsic water use efficiency (WUE<sub>i</sub>, A/gs) increased during the growing season and was greater in water-stressed vines than in well-watered vines (irrigated vines). This rise in WUE<sub>i</sub> was correlated with an increase in d<sup>13</sup>C in must sugars at harvest. Drought led to decreases in K<sub>petiole</sub>, E and sap flow in stems. A decrease in vine plant vigor was observed in vines that had been subjected to water deficits year after year. Moderate water stress during ripening favored sugar accumulation in berries and caused a reduction in total acidic and malic contents in must and available nitrogen content (YAN). Wines produced from water-stressed vines had a deeper color and were richer in anthocyanins and phenol compounds compared with wines from well-watered vines with no water stress. The vine water status greatly influenced the organoleptic quality of the resulting wines. Wines made from non-irrigated vines with a water deficit presented more structure and higher-quality tannins. They were also judged to be more full-bodied and with blended tannins than those made from irrigated vines.</p><p><strong>Conclusions : </strong>Grape ripening and resulting Pinot Noir wines were found to be largely dependent on the water supply conditions of the vines during the growing season, which influenced gas exchange and plant hydraulics.</p><p><strong>Significance and impact of the study : </strong>Plant water status constitutes a key factor in leaf gas exchange, canopy water use efficiency, berry composition and wine quality.</p>


OENO One ◽  
2015 ◽  
Vol 49 (2) ◽  
pp. 113 ◽  
Author(s):  
Vivian Zufferey ◽  
Jean-Laurent Spring ◽  
Francine Voinesco ◽  
Olivier Viret ◽  
Katia Gindro

<p class="StyleTitre2TimesNewRomanToutenmajuscule" style="text-align: justify;"><strong>Aims</strong>: The current work aims to study berry shrivel in grapes (a grape-ripening disorder) in relation to vine water status and climatic conditions using physiological and histological approaches.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Measurements of rachis hydraulic conductance on grapevine clusters (<em>Vitis vinifera</em> L.) and observations of the vascular tissues (xylem and phloem) using transmission electron microscopy were conducted on rachises from healthy clusters and clusters having berry shrivel (BS) symptoms during the season. BS intensity was largely dependent on the vine water status: BS was greater in vines without water stress than in vines with moderate to high water stress around veraison time. Preliminary results showed that rachis hydraulic conductance declined sharply after veraison but remained slightly higher in healthy clusters in comparison with clusters presenting BS symptoms. An important degradation of the primary phloem was observed in the rachises of BS clusters, with the appearance of hard, non-functional liber (secondary phloem) and a disorganization of the cell content in the phloem tissue. An alteration of the primary xylem was also observed in the middle of the rachis and in the secondary rachis ramifications.</p><p style="text-align: justify;"><strong>Conclusion</strong>: These results suggest that the decrease in sugar and water accumulation in BS berries would primarily be associated with a decline in rachis phloem functionality.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: The management of the vine water status plays a key role in berry shrivel development.</p>


1999 ◽  
Vol 26 (6) ◽  
pp. 549 ◽  
Author(s):  
M. Leonor Osório ◽  
M. Lucília Rodrigues ◽  
M. Manuela Chaves ◽  
Maria João Correia

To assess how growth temperature affects stomatal responses to xylem-transported abscisic acid (ABA), leaf conductance (g), the concentrations of ABA and calcium ions, and the pH of the xylem sap were measured in well-watered and water-stressed Lupinus albus L. plants grown under two thermal regimes: 10/15°C and 20/25°C, night/day temperature. Moderate water deficit was imposed, at the same thermal time, and induced a significant reduction in g regardless of temperature. In the morning, g was higher in plants grown at 20/25°C than in cooler conditions, and these differences could not be explained by dissimilarities in shoot water status or xylem ABA concentration. At midday, the apparent stomatal sensitivity to xylem-carried ABA was increased and the effect of temperature on the relationship between g and xylem ABA was no longer observed. A positive effect of higher temperature on stomatal aperture was also evident when artificial sap containing ABA was fed to leaves of well-watered plants. In response to exogenous ABA, stomata closed to the same extent as observed in the morning in water-stressed plants. However, exogenous ABA feeding could not mimic the relationship between g and xylem ABA determined at midday in intact plants. The pH and the concentration of calcium in xylem were not affected by temperature. At midday, however, the calcium concentrations were higher in water-stressed than in well-watered plants. These changes in the concentrations of calcium or other xylem components, such as ABA conjugates, together with possible changes in the ability of the leaves to degrade and/or to compartmentalise ABA, may partly explain the midday increase in the apparent stomatal sensitivity to xylem ABA.


Sign in / Sign up

Export Citation Format

Share Document