scholarly journals Hydroxy‐selenomethionine Supplementation Promotes the in vitro Rumen Fermentation of Dairy Cows by Altering the Relative Abundance of Rumen Microorganisms

Author(s):  
Y. Zheng ◽  
T. He ◽  
T. Xie ◽  
J. Wang ◽  
Z. Yang ◽  
...  
2017 ◽  
Vol 18 (4) ◽  
pp. 505-517 ◽  
Author(s):  
Ricardo Martins Araujo Pinho ◽  
Edson Mauro Santos ◽  
Juliana Silva de Oliveira ◽  
Alexandre Henrique Remigio Loureiro ◽  
Alberto Jefferson da Silva Macêdo ◽  
...  

SUMMARY The aim of this study was to evaluate the effect of the levels of spineless-cactus mucilage on the in vitro rumen fermentation of cellulose, starch, and protein. A completely randomized experimental design was adopted with a 5 × 3 factorial arrangement consisting of five levels of spineless-cactus mucilage (0, 5, 10, 20, and 40%) and three substrates (carboxymethylcellulose, starch, and trypticase). Treatments were evaluated in a ruminal environment simulated by in vitro incubation at different times of assessment: 0, 3, 6, 12, 24, and 48 h. The incubation procedure was repeated three times, totaling three evaluations per incubation time for each treatment. There was an interaction (P<0.05) between the mucilage levels and substrate for all evaluated ruminal parameters, except for the concentration of microbial protein after 48 h of fermentation and for the proportions of acetate and butyrate fermentation at time 0 h. There was a quadratic increase (P<0.05) in the concentration of ammoniacal nitrogen after 48 h of incubation in the media containing carboxymethylcellulose and trypticase. pH values decreased quadratically (P<0.05) as a function of the mucilage levels in the media containing carboxymethylcellulose and trypticase. Overall, no expressive alterations were observed between the individual molar proportions of acetate, propionate, and butyrate with the addition of spineless-cactus mucilage levels to the different substrates. Spineless- cactus mucilage affects the pattern of fermentation of starch, cellulase, and protein performed by rumen microorganisms.


2018 ◽  
Vol 52 (6) ◽  
pp. 622-627 ◽  
Author(s):  
Ratchataporn Lunsin ◽  
Suntariporn Duanyai ◽  
Ruangyote Pilajun ◽  
Somporn Duanyai ◽  
Prapatsorn Sombatsri

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


Sign in / Sign up

Export Citation Format

Share Document