Effect of Extrusion Processing Parameters on Antioxidant, Textural and Functional Properties of Hydrodynamic Cavitated Corn Flour, Sorghum Flour and Apple Pomace-Based Extrudates

2016 ◽  
Vol 40 (3) ◽  
pp. e12424 ◽  
Author(s):  
Umesh C. Lohani ◽  
K. Muthukumarappan
Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1385
Author(s):  
Vera Schmid ◽  
Antje Trabert ◽  
Judith Schäfer ◽  
Mirko Bunzel ◽  
Heike P. Karbstein ◽  
...  

By-products of fruit and vegetable processing are an inexpensive and sustainable source of dietary fiber, potentially offering valuable functional properties such as water binding and thickening. Due to these favorable properties, they can be utilized to reformulate widely-consumed foods, e.g., bakery products or beverages. In this study, apple pomace was used as a model system to study whether extrusion technology affects food by-product functionality and thus has the potential to broaden the application of by-products in foods. The effect of the process parameters and the extent of thermo-mechanical treatment on the structural and functional properties of apple pomace were analyzed after extrusion trials using various screw speeds, water contents, and barrel temperatures. Compared to the raw material, apple pomace extruded at Tbarrel = 100 °C, n = 700 min−1 and mH2O = 17% showed an increased water solubility up to 33%. The water absorption increased from 5 to 19 Pa·s and the paste viscosity from 5 to 339 Pa·s by extrusion processing. Analyses of dietary fiber contents and fiber polysaccharide structures revealed that thermo-mechanical stress (n = 700 min−1, mH2O = 22%) increased the content of soluble dietary fiber from 12.5 to 16.7 g/100 g dry matter, and that the harshest conditions even enabled the formation of low-molecular-weight dietary fiber. Arabinans (as neutral rhamnogalacturonan I side chains) appeared to be most sensitive to thermo-mechanical stress, whereas xylans (i.e., a group of minor polysaccharides) were an example of a more stable fiber polysaccharide. Also, the degree of methylation of the pectic polysaccharides was strongly reduced from 50% to 15% when thermo-mechanical stress was applied. Imaging and pore size analysis showed that extrusion processing could disrupt the rigid cell wall macromolecular structure.


2021 ◽  
Vol 2 (1) ◽  
pp. 167-174
Author(s):  
Sharmila PATIL ◽  
Charanjit KAUR ◽  
Manoj Kumar PUNIYA ◽  
Archana MAHAPATRA ◽  
Jyoti DHAKANE-LAD ◽  
...  

Effect of extrusion cooking on hydration properties (water absorption index (WAI), water solubility index (WSI)), and viscosity (peak viscosity (PV), final viscosity (FV)) of corn flour was studied. The preconditioned corn flour was processed using different extrusion cooking conditions at the variable moisture content (MC), temperature (T), and screw speed (SS). Statistical analysis showed that irrespective of variable processing parameters the hydration properties were improved after extrusion cooking. WAI and WSI were increased by 70% to 268% and 5 to 198%, respectively over unextruded flour. The viscosity of extruded corn flour showed a significant (p < 0.05) decrease, indicating high paste stability of corn flour after extrusion cooking. Overall, there was 72 to 86% decrease in PV and 89 to 95% decrease in FV. The mild processing conditions (high MC, low SS, and low T) imparted better hydration properties, whereas severe processing conditions (low MC, high SS, and high T) imparted better paste stability to corn flour. Extruded corn flour with modified functional properties has the potential to be exploited in the development of various gluten-free ready-to-eat products, composite flours, bakery products, etc.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 485
Author(s):  
Vera Schmid ◽  
Antje Trabert ◽  
Judith (Schäfer) Keller ◽  
Mirko Bunzel ◽  
Heike P. Karbstein ◽  
...  

Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.


2021 ◽  
Vol 20 (1) ◽  
pp. 826-833
Author(s):  
Giovanni Buonaiuto ◽  
Alberto Palmonari ◽  
Francesca Ghiaccio ◽  
Giulio Visentin ◽  
Damiano Cavallini ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Debomitra Dey ◽  
Jana K. Richter ◽  
Pichmony Ek ◽  
Bon-Jae Gu ◽  
Girish M. Ganjyal

The processing of agricultural products into value-added food products yields numerous by-products or waste streams such as pomace (fruit and vegetable processing), hull/bran (grain milling), meal/cake (oil extraction), bagasse (sugar processing), brewer's spent grain (brewing), cottonseed meal (cotton processing), among others. In the past, significant work in exploring the possibility of the utilization of these by-products has been performed. Most by-products are highly nutritious and can be excellent low-cost sources of dietary fiber, proteins, and bioactive compounds such as polyphenols, antioxidants, and vitamins. The amount of energy utilized for the disposal of these materials is far less than the energy required for the purification of these materials for valorization. Thus, in many cases, these materials go to waste or landfill. Studies have been conducted to incorporate the by-products into different foods in order to promote their utilization and tackle their environmental impacts. Extrusion processing can be an excellent avenue for the utilization of these by-products in foods. Extrusion is a widely used thermo-mechanical process due to its versatility, flexibility, high production rate, low cost, and energy efficiency. Extruded products such as direct-expanded products, breakfast cereals, and pasta have been developed by researchers using agricultural by-products. The different by-products have a wide range of characteristics in terms of chemical composition and functional properties, affecting the final products in extrusion processing. For the practical applications of these by-products in extrusion, it is crucial to understand their impacts on the qualities of raw material blends and extruded products. This review summarizes the general differences in the properties of food by-products from different sources (proximate compositions, physicochemical properties, and functional properties) and how these properties and the extrusion processing conditions influence the product characteristics. The discussion of the by-product properties and their impacts on the extrudates and their nutritional profile can be useful for food manufacturers and researchers to expand their applications. The gaps in the literature have been highlighted for further research and better utilization of by-products with extrusion processing.


Author(s):  
Maria Victória E. Grossmann ◽  
José Marcos G. Mandarino ◽  
Márcia Cristina Yabu

Flours with different physicochemical and functional properties were obtained from malted corn. Response surface methodology (RSM) was used to study the effects of malting time (1,3, 5 days), malting temperature (20, 25, 30º C) and gibberelic acid concentration (0.0; 0.5; 1.0 %) on these properties. The chemical composition and paste viscosity of flours were significantly affected by malting time and temperature, while water solubility index (WSI) and water absorption index (WAI) varied only with malting time. Gibberelic acid did not significantly influenced any of the studied properties. Germination at 20-25ºC for 3 days was recomended to obtain corn flour with high WAI, low viscosity and medium WSI, without excessive loss of proteins.


Sign in / Sign up

Export Citation Format

Share Document