scholarly journals Utilization of Food Processing By-products in Extrusion Processing: A Review

2021 ◽  
Vol 4 ◽  
Author(s):  
Debomitra Dey ◽  
Jana K. Richter ◽  
Pichmony Ek ◽  
Bon-Jae Gu ◽  
Girish M. Ganjyal

The processing of agricultural products into value-added food products yields numerous by-products or waste streams such as pomace (fruit and vegetable processing), hull/bran (grain milling), meal/cake (oil extraction), bagasse (sugar processing), brewer's spent grain (brewing), cottonseed meal (cotton processing), among others. In the past, significant work in exploring the possibility of the utilization of these by-products has been performed. Most by-products are highly nutritious and can be excellent low-cost sources of dietary fiber, proteins, and bioactive compounds such as polyphenols, antioxidants, and vitamins. The amount of energy utilized for the disposal of these materials is far less than the energy required for the purification of these materials for valorization. Thus, in many cases, these materials go to waste or landfill. Studies have been conducted to incorporate the by-products into different foods in order to promote their utilization and tackle their environmental impacts. Extrusion processing can be an excellent avenue for the utilization of these by-products in foods. Extrusion is a widely used thermo-mechanical process due to its versatility, flexibility, high production rate, low cost, and energy efficiency. Extruded products such as direct-expanded products, breakfast cereals, and pasta have been developed by researchers using agricultural by-products. The different by-products have a wide range of characteristics in terms of chemical composition and functional properties, affecting the final products in extrusion processing. For the practical applications of these by-products in extrusion, it is crucial to understand their impacts on the qualities of raw material blends and extruded products. This review summarizes the general differences in the properties of food by-products from different sources (proximate compositions, physicochemical properties, and functional properties) and how these properties and the extrusion processing conditions influence the product characteristics. The discussion of the by-product properties and their impacts on the extrudates and their nutritional profile can be useful for food manufacturers and researchers to expand their applications. The gaps in the literature have been highlighted for further research and better utilization of by-products with extrusion processing.

Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1385
Author(s):  
Vera Schmid ◽  
Antje Trabert ◽  
Judith Schäfer ◽  
Mirko Bunzel ◽  
Heike P. Karbstein ◽  
...  

By-products of fruit and vegetable processing are an inexpensive and sustainable source of dietary fiber, potentially offering valuable functional properties such as water binding and thickening. Due to these favorable properties, they can be utilized to reformulate widely-consumed foods, e.g., bakery products or beverages. In this study, apple pomace was used as a model system to study whether extrusion technology affects food by-product functionality and thus has the potential to broaden the application of by-products in foods. The effect of the process parameters and the extent of thermo-mechanical treatment on the structural and functional properties of apple pomace were analyzed after extrusion trials using various screw speeds, water contents, and barrel temperatures. Compared to the raw material, apple pomace extruded at Tbarrel = 100 °C, n = 700 min−1 and mH2O = 17% showed an increased water solubility up to 33%. The water absorption increased from 5 to 19 Pa·s and the paste viscosity from 5 to 339 Pa·s by extrusion processing. Analyses of dietary fiber contents and fiber polysaccharide structures revealed that thermo-mechanical stress (n = 700 min−1, mH2O = 22%) increased the content of soluble dietary fiber from 12.5 to 16.7 g/100 g dry matter, and that the harshest conditions even enabled the formation of low-molecular-weight dietary fiber. Arabinans (as neutral rhamnogalacturonan I side chains) appeared to be most sensitive to thermo-mechanical stress, whereas xylans (i.e., a group of minor polysaccharides) were an example of a more stable fiber polysaccharide. Also, the degree of methylation of the pectic polysaccharides was strongly reduced from 50% to 15% when thermo-mechanical stress was applied. Imaging and pore size analysis showed that extrusion processing could disrupt the rigid cell wall macromolecular structure.


2021 ◽  
Vol 63 (6) ◽  
pp. 50-56
Author(s):  
Thi Thu Hien Bui ◽  
◽  
Thanh Binh Nguyen ◽  
Thi Diem Pham ◽  
Thi Minh Nguyet Bui ◽  
...  

The processing of pangasius fish has produced a number of by-products with economic and biological value such as heads, bones, and fins, but these products have not been fully utilised. The hydrolysed protein powder from pangasius by-products has a high nutritional content, attractive taste and mainly used as the raw material in the production of some value-added food products. The purpose of this study was to develop a formula to create seasoning products from protein powder hydrolysed pangasius by-products. The main ingredients such as pangasius protein powder, starch, basic spices (salt, sugar, onion powder, ginger, pepper, etc.) were studied and selected in the recipe for seasoning powder. In which, the research process to determine the ratio of the main ingredients was done with 25-45% protein powder from pangasius by-products combined with 20-35% modified starch; 16-24% salt; 5-20% sugar; 0.5-2% spice mixture of onion powder, ginger powder, pepper powder. Product quality was assessed through sensory criteria, protein content, carbohydrates, etc. Research results had built a formula for producing nutritional seasoning products from protein powder hydrolysed pangasius by-products with protein content 18-22%, carbohydrates 30-33%, salt content 18-20%, moisture content ≤10%, and food safety criteria meet the requirements according to current regulations.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000718-000723
Author(s):  
Jared Pettit ◽  
Alman Law ◽  
Alex Brewer ◽  
John Moore

As the 3DIC market matures, more is understood about the technical and cost challenges [1]. At the 2013 Semicon-West gathering, a panel of global experts identified these technical challenges to represent some of the most significant barriers to the industry's efforts to maintain progress with Moore's Law [2]. Searching and achieving high value manufacturing of 3DIC devices requires wrestling with several technologies and processes, all which may assert a different value for the manufacturer [3]. Current technologies for thin wafer support use a wide range of adhesives applied to the device wafer, bonded to a carrier, backside processed, and de-bonded by an array of methods. Daetec has been investigating temporary bonding for nearly 15yrs, is producing a range of products for semiconductor (e.g. WaferBondTM (Brewer-Science, Inc.)) [4], and for the display market using a low-cost tunable adhesion-force material that is peeled by simple means [5]. Daetec has developed a new technology, DaeBond 3DTM, allowing de-bonding to occur in a batch process while thinned wafers are affixed to film frames. This new approach provides a shift in conventional practice. Our paper presents several temporary bonding options with DaeBond 3DTM in an effort to define value-added approaches for thin wafer handling.


Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1071-1079 ◽  
Author(s):  
Siyu Qian ◽  
Xinlong Chen ◽  
Shiyu Jiang ◽  
Qiwen Pan ◽  
Yachen Gao ◽  
...  

AbstractSupercapacitors with high power density, ultralong lifespan and wide range operating temperature have drawn significant attention in recent years. However, monitoring the state of charge in supercapacitors in a cost-effective and flexible way is still challenging. Techniques such as transmission electron microscopy and X-ray diffraction can analyze the characteristics of supercapacitor well. But with large size and high price, they are not suitable for daily monitoring of the supercapacitors’ operation. In this paper, a low cost and easily fabricated fiber-optic localized surface plasmon resonance (LSPR) probe is proposed to monitor the state of charge of the electrode in a supercapacitor. The Au nanoparticles were loading on the fiber core as LSPR sensing region. In order to implant the fiber in the supercapacitor, a reflective type of fiber sensor was used. The results show that this tiny fiber-optic LSPR sensor can provide online monitoring of the state of charge during the charging and discharging process in situ. The intensity shift in LSPR sensor has a good linear relationship with the state of charge calculated by standard galvanostatic charging and discharging test. In addition, this LSPR sensor is insensitive to the temperature change, presenting a great potential in practical applications.


2020 ◽  
Vol 104 (20) ◽  
pp. 8567-8594 ◽  
Author(s):  
Martina Cappelletti ◽  
Alessandro Presentato ◽  
Elena Piacenza ◽  
Andrea Firrincieli ◽  
Raymond J. Turner ◽  
...  

Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. Key points • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3531 ◽  
Author(s):  
Lorenzo Manoni ◽  
Claudio Turchetti ◽  
Laura Falaschetti ◽  
Paolo Crippa

Wearable devices offer a convenient means to monitor biosignals in real time at relatively low cost, and provide continuous monitoring without causing any discomfort. Among signals that contain critical information about human body status, electromyography (EMG) signal is particular useful in monitoring muscle functionality and activity during sport, fitness, or daily life. In particular surface electromyography (sEMG) has proven to be a suitable technique in several health monitoring applications, thanks to its non-invasiveness and ease to use. However, recording EMG signals from multiple channels yields a large amount of data that increases the power consumption of wireless transmission thus reducing the sensor lifetime. Compressed sensing (CS) is a promising data acquisition solution that takes advantage of the signal sparseness in a particular basis to significantly reduce the number of samples needed to reconstruct the signal. As a large variety of algorithms have been developed in recent years with this technique, it is of paramount importance to assess their performance in order to meet the stringent energy constraints imposed in the design of low-power wireless body area networks (WBANs) for sEMG monitoring. The aim of this paper is to present a comprehensive comparative study of computational methods for CS reconstruction of EMG signals, giving some useful guidelines in the design of efficient low-power WBANs. For this purpose, four of the most common reconstruction algorithms used in practical applications have been deeply analyzed and compared both in terms of accuracy and speed, and the sparseness of the signal has been estimated in three different bases. A wide range of experiments are performed on real-world EMG biosignals coming from two different datasets, giving rise to two different independent case studies.


2014 ◽  
Vol 5 ◽  
pp. 964-972 ◽  
Author(s):  
Tomi Roinila ◽  
Xiao Yu ◽  
Jarmo Verho ◽  
Tie Li ◽  
Pasi Kallio ◽  
...  

Silicon nanowire-based field-effect transistors (SiNW FETs) have demonstrated the ability of ultrasensitive detection of a wide range of biological and chemical targets. The detection is based on the variation of the conductance of a nanowire channel, which is caused by the target substance. This is seen in the voltage–current behavior between the drain and source. Some current, known as leakage current, flows between the gate and drain, and affects the current between the drain and source. Studies have shown that leakage current is frequency dependent. Measurements of such frequency characteristics can provide valuable tools in validating the functionality of the used transistor. The measurements can also be an advantage in developing new detection technologies utilizing SiNW FETs. The frequency-domain responses can be measured by using a commercial sine-sweep-based network analyzer. However, because the analyzer takes a long time, it effectively prevents the development of most practical applications. Another problem with the method is that in order to produce sinusoids the signal generator has to cope with a large number of signal levels. This may become challenging in developing low-cost applications. This paper presents fast, cost-effective frequency-domain methods with which to obtain the responses within seconds. The inverse-repeat binary sequence (IRS) is applied and the admittance spectroscopy between the drain and source is computed through Fourier methods. The methods is verified by experimental measurements from an n-type SiNW FET.


2020 ◽  
Vol 2 (2) ◽  
pp. 139-149

Extraction of chitin from mud crab (Scylla serrata) shells, involving demineralization and deproteinization, and deacetylation of the extracted chitin to form chitosan were investigated. The mud crab chitin and chitosan were obtained with a good yield (16.8% and 84.7% based on dried weight basis). The physicochemical properties, functional groups, molecular weight, and degree of acetylation of the chitin and chitosan were characterized. The surface morphology, the orientation arrangement of polysaccharide strands, and crystallinity of the chitin and chitosan prepared from the mud crab shells were investigated. SEM, FTIR, and XRD analyses demonstrated that the chitin consists of micron-sized fibrils, belonging to α from with the crystallinity of 60.1%. The chitosan has a viscosity-average molecular weight of 6.83 kDa with the degree of acetylation being 9.6% and the crystallinity of 73.8%. The chitosan was successfully fabricated into submicron-sized particles using top-down ionotropic gelation, microwave, and microemulsion methods, employing sodium tripolyphosphate, potassium persulfate, and glutaraldehyde as reagents, respectively. Overall, the results indicated that the preparation of chitin, chitosan, and submicron-sized chitosan particles from mud crab shells could open the opportunity for the value-added seafood waste to be utilized in a wide range of practical applications.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2932
Author(s):  
Katia Cappelli ◽  
Flavia Ferlisi ◽  
Samanta Mecocci ◽  
Margherita Maranesi ◽  
Massimo Trabalza-Marinucci ◽  
...  

Agro-industrial processing for the production of food or non-food products generates a wide range of by-products and residues rich in bioactive compounds including polyphenols. The concentration of these by-products is sometimes higher than in the original raw material as in the case of olive mill waste water (OMWW), one of the main by-products of olive oil extraction. Polyphenols are secondary plant metabolites that regulate the expression of specific inflammatory genes, transcriptional factors and pro/anti-apoptotic molecules, thus modulating the signaling pathways essential for cell health and homeostasis. The liver plays a key role in regulating homeostasis by responding to dietary changes in order to maintain nutritional and physiological states. In this study a nutrigenomic approach was adopted, which focuses on the effects of diet–health–gene interactions and the modulation of cellular processes, in order to evaluate the expression of the genes (AGER, BAX, COX2, IL1B, PPARA, PPARG, SIRT1, TNFA) involved in these interactions in the livers of rabbits fed with a diet supplemented with OMWW (POL) or without supplements (control, CTR). The RT-qPCR analysis showed the down-regulation of SIRT1, TNFA, AGER, BAX and PPARA transcripts in the POL group compared to the CTR group. These results show that OMWW dietary supplementation prevents cell death and tissue deterioration in rabbits.


2021 ◽  
Author(s):  
Magdalena Lech

Abstract The brewery spent grain (BSG) is a lignocellulosic waste material produced in a huge amount around the world. Strict environmental protection law requires proper utilization. BSG can be transformed into easy-fermentable carbohydrates as a result of hydrolysis. This may be a low-cost raw material for biotechnological fermentation. The literature provides a lot of information that hydrolysis of lignocellulose creates by-products which can be potentially noxious to bacteria cells employed in fermentation. This research examined the influence of most of these by-products: furfural, acetic, formic, gallic, and levuilnic acid, on the LA fermentation effectiveness. These components were introduced to Lactobacillus cultures in various concentrations. The rate of cell growth, glucose consumption, and lactic acid production were measured. This components affects in various extent on LA formation in the culture. In any case, there is a critical value of them harms the fermentation, due to the reduced ability of bacteria propagation. Lower concentrations of bio-catalyst lead to an LA production efficiency drop. The LA concentrations in flasks after one day of propagation with the 2.1 [g/L] of appropriate inhibitor drop app. [%] 16 (F), 22 (GA), 8 (LevA), 40 (AA), and 100 (FA) in comparison to the flask without any inhibitor.


Sign in / Sign up

Export Citation Format

Share Document