Effect of seed size and drying temperature on the hot air‐drying kinetics and quality of Chinese hickory (Caryacathayensis) storage.

Author(s):  
Zhiping He ◽  
Minqian Ye ◽  
Youqing Zhang ◽  
Fenghua Wu ◽  
Maorun Fu ◽  
...  
2019 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Pranabendu Mitra ◽  
Md. Abdul Alim ◽  
Venkatesh Meda

The horseradish (Armoracia rusticana) is an important crop as ingredients for many commercial food products and medicinal uses. However, the horseradish is perishable and preservation of this crop for supplying year-round is necessary. Drying can be used to preserve the horseradish but establishing a suitable drying method and conditions are important for product quality of dried horseradish. The objective of this study was to investigate the effects of hot air-drying temperatures on the physicochemical and textural properties of dried horseradish samples to determine the appropriate hot air-drying conditions. The sliced horseradish samples were dried at 55, 65, 75, 85 and 95 ℃ using a conventional hot air drier. The physicochemical and textural properties of the dried horseradish samples were determined, and the results were compared for different drying temperatures. The ANOVA analysis indicated that the drying temperature affected the physicochemical and textural properties of dried horseradish samples significantly (p<0.05). The experimental results indicated that the moisture content (9.18-6.15%,wb), aw (0.06-0.03), porosity (31.47-12.13%) and rehydration ratio (82.74 -44.47%) decreased and piece density (0.63-0.84 g/mL), hardness (193.63 -298.31N), cohesiveness (1.04-1.32), gumminess (202.13-390.12) and chewiness (635.08-1223.55) of dried horseradish samples increased with the drying temperature. Power law model indicated that the porosity was linearly corelated to the rehydration ratio of dried horseradish samples. The overall results revealed that relatively lower (55-65 ℃) drying temperature range was suitable to keep the quality of the dried horseradish samples. The findings of this study are expected to be helpful for the commercial drying of horseradish samples using hot air-drying method.


2019 ◽  
Vol 115 ◽  
pp. 87-99 ◽  
Author(s):  
Begüm Önal ◽  
Giuseppina Adiletta ◽  
Alessio Crescitelli ◽  
Marisa Di Matteo ◽  
Paola Russo

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ernest Ekow Abano ◽  
Joshua Akanson ◽  
Nazir Kizzie-Hayford

The objective of this study was to provide the optimum drying conditions to produce high-quality dried tiger nuts using hot-air drying. For this, we evaluated the effect of the whole, halved, and pulverized tiger nuts and air temperature (50 to 70°C) on the drying kinetics and quality of tiger nuts. The drying process generally followed a constant rate in the first 3 hours and a falling regime. We found the optimum drying conditions for tiger nuts to be crushed before convective hot-air drying at a temperature of 70°C. At this optimum condition, the predicted drying time, vitamin C content, reducing sugars, browning, brightness, redness, and yellowness was 780 min, 22.9 mg/100 mg dry weight, 157.01 mg/100 g dry weight, 0.21 Abs unit, 56.97, 1.6, and 17.0, respectively. The tiger nut’s reducing sugars increased from the 130.8 mg/100 dry weight in the raw tiger nuts to between 133.11 and 158.18 mg/100 dry weight after drying. The vitamin C degradation rate was highest in the uncut tiger nuts (32-35%) while in the halved and the pulverized samples, it was between 12 and 17%. The crushed samples’ effective moisture removal increased between 5.6- and 6.75-fold at the different air temperatures than that of the intact tiger nuts. The activation energy was 18.17 kJ/mol for the unbroken, 14.78 kJ/mol for the halved, and 26.61 kJ/mol for the pulverized tiger nut samples. The model MR = 0.997   exp − 0.02 t 1.266 + 0.0000056 t was the most suitable thin-layer drying model among the models examined for convective hot-air drying of tiger nuts. It is advisable to crush tiger nut before hot-air drying to produce better-quality flour for making milk beverages, cakes, biscuits, bread, porridge, and tiger nut-based breakfast cereals.


2009 ◽  
Vol 27 (10) ◽  
pp. 1105-1115 ◽  
Author(s):  
R. Lemus-Mondaca ◽  
M. Miranda ◽  
A. Andres Grau ◽  
V. Briones ◽  
R. Villalobos ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 44
Author(s):  
Mukesh Guragain ◽  
Pranabendu Mitra

The preservation of perishable horseradish crop is essential to increase the shelf-life and supply year-round. Hot air-drying method is commercially viable for preserving fruits and vegetables. However, drying conditions such as drying temperature affect the drying kinetic and the final quality of dried products. It is necessary to understand how drying temperature and blanching affect the drying kinetics of horseradish for the prediction of the right drying conditions. The objective of this study was to investigate the hot air-drying kinetics by fitting commonly used five empirical models to establish right hot air-drying conditions for drying of horseradish. The unblanched (control, C) and blanched (B) horseradish slices were dried at 50, 70 and 85℃ until reaching to an equilibrium moisture content (db). The moisture reduction data were collected at certain intervals and the moisture content data were converted to moisture ratio (MR). The MR data were used to predict the drying kinetics of horseradish drying using five empirical models. The results indicated that drying kinetics followed the constant drying rate period and falling rate period for all three drying temperatures. The five tested models were able to predict the drying kinetics with R2 (0.96-0.99) and RMSE (0.01-0.06) depending on the models and blanching. However, diffusion approach model was the best fitted model securing the highest R2 and the lowest RMSE. The findings of this research are expected to be significantly important for horseradish drying effectively.


LWT ◽  
2021 ◽  
pp. 111572
Author(s):  
Yafei Liu ◽  
Yalan Zhang ◽  
Xueying Wei ◽  
Dingtao Wu ◽  
Jianwu Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document