Hydrolysates from ultrafiltrated double‐cream cheese whey: enzymatic hydrolysis, antioxidant and ACE‐inhibitory activities and peptide characterization

Author(s):  
Sandra Zapata Bustamante ◽  
José Uriel Sepúlveda Valencia ◽  
Guillermo Antonio Correa Londoño ◽  
Diego Luis Durango Restrepo ◽  
Jesús Humberto Gil González
2011 ◽  
Vol 78 (4) ◽  
pp. 471-478 ◽  
Author(s):  
Maryam Salami ◽  
Ali Akbar Moosavi-Movahedi ◽  
Faezeh Moosavi-Movahedi ◽  
Mohammad Reza Ehsani ◽  
Reza Yousefi ◽  
...  

The aim of this study was to investigate the effects of enzymatic hydrolysis with digestive enzymes of camel whole casein and beta-casein (β-CN) on their antioxidant and Angiotensin Converting Enzyme (ACE)-inhibitory properties. Peptides in each hydrolysate were fractionated with ultra-filtration membranes. The antioxidant activity was determined using a Trolox equivalent antioxidant capacity (TEAC) scale. After enzymatic hydrolysis, both antioxidant and ACE-inhibitory activities of camel whole casein and camel β-CN were enhanced. Camel whole casein and β-CN showed significant ACE-inhibitory activities after hydrolysis with pepsin alone and after pepsinolysis followed by trypsinolysis and chymotrypsinolysis. Camel β-CN showed high antioxidant activity after hydrolysis with chymotrypsin. The results of this study suggest that when camel milk is consumed and digested, the produced peptides start to act as natural antioxidants and ACE-inhibitors.


2015 ◽  
Vol 44 (7) ◽  
pp. 1084-1089 ◽  
Author(s):  
So-Yeon Choi ◽  
Si-Kyung Kim ◽  
Un-Young Youn ◽  
Dae-Ook Kang ◽  
Nack-Shick Choi ◽  
...  

2018 ◽  
Vol 5 (7) ◽  
pp. 180276 ◽  
Author(s):  
Le Wang ◽  
Xiang Li ◽  
Yingnan Li ◽  
Wenying Liu ◽  
Xiaoyun Jia ◽  
...  

Xuanwei ham is especially rich in a large amount of peptides and free amino acids under the action of protein degradation. Some of these peptides can potentially exert bioactivities of interest for human health. Traditionally, Xuanwei ham should undergo Chinese household cooking treatments before eating. However, it has not been known how its bioactivity changes after cooking and gastrointestinal digestion. Herein, Xuanwei ham is analysed before and after cooking, as well as gastrointestinal digestion being simulated so as to evaluate and compare its effect on antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities. The antioxidant activity is analysed using five different methods, and results demonstrate that cooking has some negative effects on antioxidative capacity when determined using different antioxidant methods except for a significant increment in 1,1'-diphenyl-2-picrylhydrazyl radical-scavenging activity, while ACE inhibitory activity increases significantly after cooking compared with control samples. After gastrointestinal digestion of samples, there is a significant increment of the antioxidant and ACE inhibitory activities in comparison with control and cooked samples. Particularly, after gastrointestinal digestion, free thiols content and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical-cation-scavenging activity of Xuanwei ham, respectively, increase about twice and fourfold, while ACE inhibitory activity increases about twice compared to cooked samples, reaching the value of 83.73%. Therefore, through cooking the antioxidant activity and ACE inhibitory activity of Xuanwei ham are not completely lost and a part of them is still maintained, while gastrointestinal digestion produces a significant enhancement in both bioactivities, highlighting a greater potential for a beneficial physiological effect on human health after eating it.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2099
Author(s):  
Lucía Abadía-García ◽  
Eduardo Castaño-Tostado ◽  
Anaberta Cardador-Martínez ◽  
Sandra Teresita Martín-del-Campo ◽  
Silvia L. Amaya-Llano

High Intensity Ultrasound (HIUS) can induce modification of the protein structure. The combination of enzymatic hydrolysis and ultrasound is an interesting strategy to improve the release of the Angiotensin-Converting Enzyme (ACE) inhibitory peptides. In this study, whey proteins were pretreated with HIUS at two levels of amplitude (30 and 50%) for 10 min, followed by hydrolysis using the vegetable protease bromelain. The hydrolysates obtained were ultrafiltrated and their fractions were submitted to a simulated gastrointestinal digestion. The conformational changes induced by HIUS on whey proteins were analyzed using Fourier-transform infrared spectroscopy by attenuated total reflectance (FTIR-ATR) and intrinsic spectroscopy. It was found that both levels of ultrasound pretreatment significantly decreased the IC50 value (50% Inhibitory Concentration) of the hydrolysates in comparison with the control (α = 0.05). After this treatment, HIUS-treated fractions were shown as smaller in size and fractions between 1 and 3 kDa displayed the highest ACE inhibition activity. HIUS promoted significant changes in whey protein structure, inducing, unfolding, and aggregation, decreasing the content of α-helix, and increasing β-sheets structures. These findings prove that ultrasound treatment before enzymatic hydrolysis is an innovative and useful strategy that modifies the peptide profile of whey protein hydrolysates and enhances the production of ACE inhibitory peptides.


Sign in / Sign up

Export Citation Format

Share Document