scholarly journals Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model

2014 ◽  
Vol 129 (6) ◽  
pp. 1002-1012 ◽  
Author(s):  
Esther Imperlini ◽  
Stefania Orrù ◽  
Claudia Corbo ◽  
Aurora Daniele ◽  
Francesco Salvatore
2019 ◽  
Vol 129 (9) ◽  
pp. 871-881 ◽  
Author(s):  
Han-Chung Lee ◽  
Hadri Hadi Md Yusof ◽  
Melody Pui-Yee Leong ◽  
Shahidee Zainal Abidin ◽  
Eryse Amira Seth ◽  
...  

Lung Cancer ◽  
2005 ◽  
Vol 49 ◽  
pp. S290 ◽  
Author(s):  
E. Conde ◽  
R. García Luján ◽  
A. López Encuentra ◽  
L. Sánchez ◽  
M. Sánchez-Céspedes ◽  
...  

2014 ◽  
Vol 34 (2) ◽  
pp. 578-584 ◽  
Author(s):  
BING DU ◽  
LING LI ◽  
ZHIBIAO ZHONG ◽  
XIAOLI FAN ◽  
BINGBING QIAO ◽  
...  

Parasitology ◽  
2006 ◽  
Vol 133 (4) ◽  
pp. 497-508 ◽  
Author(s):  
M. K. ISLAM ◽  
T. MIYOSHI ◽  
M. YAMADA ◽  
M. A. ALIM ◽  
X. HUANG ◽  
...  

Sodium fluoride (NaF) is an anion that has been previously shown to block the moulting process ofAscaris suumlarvae. This study describes moulting and development-specific protein expression profiles ofA. suumlung-stage L3 (AsLL3) following NaF exposure. AsLL3s cultured in the presence or absence of NaF were prepared for protein analysis using two-dimensional (2D) electrophoresis. NaF exposure inhibited at least 22 proteins in AsLL3 compared with moulted larvae (i.e. AsLL4). A further comparison of AsLL4 with those of pre-cultured AsLL3 and NaF-exposed AsLL3 revealed 8 stage-specifically and 4 over-expressed proteins. Immunoblot analysis revealed an inhibition by NaF of 19 immunoreactive proteins. Enzyme assay and immunochemical data showed an inhibition of the moulting-specific inorganic pyrophosphatase activity by 41% and a decreased expression in NaF-treated larvae, indicating its significance in the moulting process. A protein spot associated with NaF inhibition was isolated and identified by peptide mass spectrometry and bioinformatics approaches to be a member of 3–hydroxyacyl–CoA dehydrogenase/short-chain dehydrogenase enzyme families. These results have implications for the identification of proteins specific to the moulting process as potential chemotherapeutic targets.


2005 ◽  
Vol 47 (6) ◽  
pp. 885-894 ◽  
Author(s):  
J. Mueller ◽  
F. von Eggeling ◽  
D. Driesch ◽  
J. Schubert ◽  
C. Melle ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi121-vi121
Author(s):  
Kacper Walentynowicz ◽  
Dalit Engelhardt ◽  
Shreya Yadav ◽  
Ugoma Onubogu ◽  
Roberto Salatino ◽  
...  

Abstract Heterogeneity of glioblastoma (GBM) has been extensively studied in recent years with identification of oncogenic drivers of GBM cellular subtypes. However, little is known about how these cells interact with each other or with the surrounding tumor microenvironment (TME). We employed spatial protein profiling targeting immune and neuronal markers (79 proteins) coupled with single-cell spatial maps of fluorescence in situ hybridization (FISH) for EGFR, CDK4, and PDGFRA on human GBM tissue sections. Several cores from 20 GBM samples were collected to create a tissue microarray, and 96 regions of interests were profiled with 37,844 nuclei for oncogenic amplification screen. Spatial protein profiling identified strong correlation of certain immune markers, TAU-associated proteins, and oligodendrocyte-enriched protein groups and overall high intratumor heterogeneity of TME. Our single-cell quantification of FISH signals showed differences among tumors based on the prevalence of dual amplification of EGFR and CDK4 within a cell relative to single oncogene amplified cells. High relative frequency of dual amplification was associated with increased expression of immune-related markers and decreased expression of EGFR protein. Moreover, this protein expression signature was associated with survival in another GBM dataset. Here, we present spatial genetic analysis at the single cell level coupled with protein expression profiles associated with tumor microenvironment. Our results suggest that assessment of genetic heterogeneity in GBM could potentially drive improved patient stratification and treatment.


Sign in / Sign up

Export Citation Format

Share Document