scholarly journals The high-affinity D2/D3 agonist D512 protects PC12 cells from 6-OHDA-induced apoptotic cell death and rescues dopaminergic neurons in the MPTP mouse model of Parkinson's disease

2014 ◽  
Vol 131 (1) ◽  
pp. 74-85 ◽  
Author(s):  
Mrudang Shah ◽  
Subramanian Rajagopalan ◽  
Liping Xu ◽  
Chandrashekhar Voshavar ◽  
Yevgeniya Shurubor ◽  
...  
2020 ◽  
Vol 21 (20) ◽  
pp. 7517
Author(s):  
Md Ezazul Haque ◽  
Mahbuba Akther ◽  
Shofiul Azam ◽  
Dong-Kug Choi ◽  
In-Su Kim

In Parkinson’s disease, mitochondrial oxidative stress-mediated apoptosis is a major cause of dopaminergic neuronal loss in the substantia nigra (SN). G protein-coupled receptor 4 (GPR4), previously recognised as an orphan G protein coupled-receptor (GPCR), has recently been claimed as a member of the group of proton-activated GPCRs. Its activity in neuronal apoptosis, however, remains undefined. In this study, we investigated the role of GPR4 in the 1-methyl-4-phenylpyridinium ion (MPP+) and hydrogen peroxide (H2O2)-treated apoptotic cell death of stably GPR4-overexpressing and stably GPR4-knockout human neuroblastoma SH-SY5Y cells. In GPR4-OE cells, MPP+ and H2O2 were found to significantly increase the expression levels of both mRNA and proteins of the pro-apoptotic Bcl-2-associated X protein (Bax) genes, while they decreased the anti-apoptotic B-cell lymphoma 2 (Bcl-2) genes. In addition, MPP+ treatment activated Caspase-3, leading to the cleavage of poly (ADP-ribose) polymerase (PARP) and decreasing the mitochondrial membrane potential (ΔΨm) in GPR4-OE cells. In contrast, H2O2 treatment significantly increased the intracellular calcium ions (Ca2+) and reactive oxygen species (ROS) in GPR4-OE cells. Further, chemical inhibition by NE52-QQ57, a selective antagonist of GPR4, and knockout of GPR4 by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 decreased the Bax/Bcl-2 ratio and ROS generation, and stabilised the ΔΨm, thus protecting the SH-SY5Y cells from MPP+- or H2O2-induced apoptotic cell death. Moreover, the knockout of GPR4 decreased the proteolytic degradation of phosphatidylinositol biphosphate (PIP2) and subsequent release of the endoplasmic reticulum (ER)-stored Ca2+ in the cytosol. Our results suggest that the pharmacological inhibition or genetic deletion of GPR4 improves the neurotoxin-induced caspase-dependent mitochondrial apoptotic pathway, possibly through the modulation of PIP2 degradation-mediated calcium signalling. Therefore, GPR4 presents a potential therapeutic target for neurodegenerative disorders such as Parkinson’s disease.


2009 ◽  
Vol 55 (5) ◽  
pp. 341-348 ◽  
Author(s):  
Daniela Moniz Arduíno ◽  
A. Raquel Esteves ◽  
Sandra M. Cardoso ◽  
Catarina R. Oliveira

2021 ◽  
Vol 22 (9) ◽  
pp. 4674
Author(s):  
Md Ezazul Haque ◽  
Shofiul Azam ◽  
Mahbuba Akther ◽  
Duk-Yeon Cho ◽  
In-Su Kim ◽  
...  

The proton-activated G protein-coupled receptor (GPCR) 4 (GPR4) is constitutively active at physiological pH, and GPR4 knockout protected dopaminergic neurons from caspase-dependent mitochondria-associated apoptosis. This study explored the role of GPR4 in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson’s disease (PD). In mice, subchronic MPTP administration causes oxidative stress-induced apoptosis in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), resulting in motor deficits. NE52-QQ57, a selective GPR4 antagonist, reduced dopaminergic neuronal loss in MPTP-treated mice, improving motor and memory functions. MPTP and NE52-QQ57 co-treatment in mice significantly decreased pro-apoptotic marker Bax protein levels and increased anti-apoptotic marker Bcl-2 protein levels in the SNpc and striatum. MPTP-induced caspase 3 activation and poly (ADP-ribose) polymerase (PARP) cleavage significantly decreased in the SNpc and striatum of mice co-treated with NE52-QQ57. MPTP and NE52-QQ57 co-treatment significantly increased tyrosine hydroxylase (TH)-positive cell numbers in the SNpc and striatum compared with MPTP alone. NE52-QQ57 and MPTP co-treatment improved rotarod and pole test–assessed motor performance and improved Y-maze test–assessed spatial memory. Our findings suggest GPR4 may represent a potential therapeutic target for PD, and GPR4 activation is involved in caspase-mediated neuronal apoptosis in the SNpc and striatum of MPTP-treated mice.


2009 ◽  
Vol 29 (43) ◽  
pp. 13543-13556 ◽  
Author(s):  
A. Ghosh ◽  
A. Roy ◽  
J. Matras ◽  
S. Brahmachari ◽  
H. E. Gendelman ◽  
...  

2018 ◽  
Author(s):  
Michal Wegrzynowicz ◽  
Dana Bar-On ◽  
Laura Calo’ ◽  
Oleg Anichtchik ◽  
Mariangela Iovino ◽  
...  

SUMMARYParkinson’s Disease (PD) is characterized by the presence of α-synuclein aggregates known as Lewy bodies and Lewy neurites, whose formation is linked to disease development. The causal relation between α-synuclein aggregates and PD is not well understood. We generated a new transgenic mouse line (MI2) expressing human, aggregation-prone truncated 1-120 α-synuclein under the control of the tyrosine hydroxylase promoter. MI2 mice exhibit progressive aggregation of α-synuclein in dopaminergic neurons of the substantia nigra pars compacta and their striatal terminals. This is associated with a progressive reduction of striatal dopamine release, reduced striatal innervation and significant nigral dopaminergic nerve cell death starting from 6 and 12 months of age, respectively. Overt impairment in motor behavior was found in MI2 mice at 20 months of age, when 50% of dopaminergic neurons are lost. These changes were associated with an increase in the number and density of 20-500nm α-synuclein species as shown by dSTORM. Treatment with the oligomer modulator anle138b, from 9-12 months of age, restored striatal dopamine release and prevented dopaminergic cell death. These effects were associated with a reduction of the inner density of α-synuclein aggregates and an increase in dispersed small α-synuclein species as revealed by dSTORM. The MI2 mouse model recapitulates the progressive dopaminergic deficit observed in PD, showing that early synaptic dysfunction precedes dopaminergic axonal loss and neuronal death that become associated with a motor deficit upon reaching a certain threshold. Our data also provide new mechanistic insight for the effect of anle138b’s function in vivo supporting that targeting α-synuclein aggregation is a promising therapeutic approach for PD.


Author(s):  
Xin He ◽  
Yue Xie ◽  
Qiongping Zheng ◽  
Zeyu Zhang ◽  
Shanshan Ma ◽  
...  

Impairment of autophagy has been strongly implicated in the progressive loss of nigral dopaminergic neurons in Parkinson’s disease (PD). Transcription factor E3 (TFE3), an MiTF/TFE family transcription factor, has been identified as a master regulator of the genes that are associated with lysosomal biogenesis and autophagy. However, whether TFE3 is involved in parkinsonian neurodegeneration remains to be determined. In this study, we found decreased TFE3 expression in the nuclei of the dopaminergic neurons of postmortem human PD brains. Next, we demonstrated that TFE3 knockdown led to autophagy dysfunction and neurodegeneration of dopaminergic neurons in mice, implying that reduction of nuclear TFE3 may contribute to autophagy dysfunction-mediated cell death in PD. Further, we showed that enhancement of autophagy by TFE3 overexpression dramatically reversed autophagy downregulation and dopaminergic neurons loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Taken together, these findings demonstrate that TFE3 plays an essential role in maintaining autophagy and the survival of dopaminergic neurons, suggesting TFE3 activation may serve as a promising strategy for PD therapy.


Sign in / Sign up

Export Citation Format

Share Document