scholarly journals Amyloid pathology and synaptic loss in pathological aging

2021 ◽  
Author(s):  
Eleni Gkanatsiou ◽  
Johanna Nilsson ◽  
Christina E. Toomey ◽  
Agathe Vrillon ◽  
Hlin Kvartsberg ◽  
...  
2008 ◽  
Author(s):  
Salvador Algarabel ◽  
Joaquin Escudero ◽  
Jose Mazon ◽  
Alfonso Pitarque ◽  
Vicente Peset ◽  
...  
Keyword(s):  

2021 ◽  
pp. 135245852110221
Author(s):  
Marco Vercellino ◽  
Stella Marasciulo ◽  
Silvia Grifoni ◽  
Elena Vallino-Costassa ◽  
Chiara Bosa ◽  
...  

Objectives: To investigate the extent of synaptic loss, and the contribution of gray matter (GM) inflammation and demyelination to synaptic loss, in multiple sclerosis (MS) brain tissue. Methods: This study was performed on two different post-mortem series of MS and control brains, including deep GM and cortical GM. MS brain samples had been specifically selected for the presence of active demyelinating GM lesions. Over 1,000,000 individual synapses were identified and counted using confocal microscopy, and further characterized as glutamatergic/GABAergic. Synaptic counts were also correlated with neuronal/axonal loss. Results: Important synaptic loss was observed in active demyelinating GM lesions (−58.9%), while in chronic inactive GM lesions, synaptic density was only mildly reduced compared to adjacent non-lesional gray matter (NLGM) (−12.6%). Synaptic loss equally affected glutamatergic and GABAergic synapses. Diffuse synaptic loss was observed in MS NLGM compared to control GM (−21.2% overall). Conclusion: This study provides evidence, in MS brain tissue, of acute synaptic damage/loss during active GM inflammatory demyelination and of synaptic reorganization in chronically demyelinated GM, affecting equally glutamatergic and GABAergic synapses. Furthermore, this study provides a strong indication of widespread synaptic loss in MS NLGM also independently from focal GM demyelination.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yingxi Wu ◽  
Haijian Wu ◽  
Jianxiong Zeng ◽  
Brock Pluimer ◽  
Shirley Dong ◽  
...  

Abstract Introduction Traumatic brain injury (TBI) is considered as the most robust environmental risk factor for Alzheimer’s disease (AD). Besides direct neuronal injury and neuroinflammation, vascular impairment is also a hallmark event of the pathological cascade after TBI. However, the vascular connection between TBI and subsequent AD pathogenesis remains underexplored. Methods In a closed-head mild TBI (mTBI) model in mice with controlled cortical impact, we examined the time courses of microvascular injury, blood–brain barrier (BBB) dysfunction, gliosis and motor function impairment in wild type C57BL/6 mice. We also evaluated the BBB integrity, amyloid pathology as well as cognitive functions after mTBI in the 5xFAD mouse model of AD. Results mTBI induced microvascular injury with BBB breakdown, pericyte loss, basement membrane alteration and cerebral blood flow reduction in mice, in which BBB breakdown preceded gliosis. More importantly, mTBI accelerated BBB leakage, amyloid pathology and cognitive impairment in the 5xFAD mice. Discussion Our data demonstrated that microvascular injury plays a key role in the pathogenesis of AD after mTBI. Therefore, restoring vascular functions might be beneficial for patients with mTBI, and potentially reduce the risk of developing AD.


2021 ◽  
Vol 22 (9) ◽  
pp. 4626
Author(s):  
Clément Barbereau ◽  
Nicolas Cubedo ◽  
Tangui Maurice ◽  
Mireille Rossel

Tauopathies represent a vast family of neurodegenerative diseases, the most well-known of which is Alzheimer’s disease. The symptoms observed in patients include cognitive deficits and locomotor problems and can lead ultimately to dementia. The common point found in all these pathologies is the accumulation in neural and/or glial cells of abnormal forms of Tau protein, leading to its aggregation and neurofibrillary tangles. Zebrafish transgenic models have been generated with different overexpression strategies of human Tau protein. These transgenic lines have made it possible to highlight Tau interacting factors or factors which may limit the neurotoxicity induced by mutations and hyperphosphorylation of the Tau protein in neurons. Several studies have tested neuroprotective pharmacological approaches. On few-days-old larvae, modulation of various signaling or degradation pathways reversed the deleterious effects of Tau mutations, mainly hTauP301L and hTauA152T. Live imaging and live tracking techniques as well as behavioral follow-up enable the analysis of the wide range of Tau-related phenotypes from synaptic loss to cognitive functional consequences.


2021 ◽  
Vol 139 ◽  
pp. 111579
Author(s):  
Anella Saviano ◽  
Gian Marco Casillo ◽  
Federica Raucci ◽  
Alessia Pernice ◽  
Cristina Santarcangelo ◽  
...  

Author(s):  
Chihiro Sato ◽  
Nipun Mallipeddi ◽  
Nupur Ghoshal ◽  
Brenton A. Wright ◽  
Gregory S. Day ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document