scholarly journals Penetration by Botryosphaeriaceae species in avocado, guava and persimmon fruit during postharvest

2021 ◽  
Author(s):  
Barbara Ludwig Navarro ◽  
Juan Pablo Edwards Molina ◽  
Antonio Fernandes Nogueira Júnior
2015 ◽  
Vol 96 (9) ◽  
pp. 3140-3147 ◽  
Author(s):  
Mateja Senica ◽  
Robert Veberic ◽  
Jana Jurhar Grabnar ◽  
Franci Stampar ◽  
Jerneja Jakopic

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
J. Kim ◽  
O. Choi ◽  
J.-H. Kwon

Sweet persimmon (Diospyros kaki L.), a fruit tree in the Ebenaceae, is cultivated widely in Korea and Japan, the leading producers worldwide (2). Sweet persimmon fruit with flyspeck symptoms were collected from orchards in the Jinju area of Korea in November 2010. The fruit had fungal clusters of black, round to ovoid, sclerotium-like fungal bodies with no visible evidence of a mycelial mat. Orchard inspections revealed that disease incidence ranged from 10 to 20% in the surveyed area (approximately 10 ha) in 2010. Flyspeck symptoms were observed on immature and mature fruit. Sweet persimmon fruit peels with flyspeck symptoms were removed, dried, and individual speck lesions transferred to potato dextrose agar (PDA) and cultured at 22°C in the dark. Fungal isolates were obtained from flyspeck colonies on 10 sweet persimmon fruit harvested from each of three orchards. Fungal isolates that grew from the lesions were identified based on a previous description (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA sequence of a representative isolate was amplified and sequenced using primers ITS1 and ITS4 (4). The resulting 552-bp sequence was deposited in GenBank (Accession No. HQ698923). Comparison with ITS rDNA sequences showed 100% similarity with a sequence of Zygophiala wisconsinensis Batzer & Crous (GenBank Accession No. AY598855), which infects apple. To fulfill Koch's postulates, mature, intact sweet persimmon fruit were surface sterilized with 70% ethanol and dried. Three fungal isolates from this study were grown on PDA for 1 month. A colonized agar disc (5 mm in diameter) of each isolate was cut from the advancing margin of a colony with a sterilized cork borer, transferred to a 1.5-ml Eppendorf tube, and ground into a suspension of mycelial fragments and conidia in a blender with 1 ml of sterile, distilled water. The inoculum of each isolate was applied by swabbing a sweet persimmon fruit with the suspension. Three sweet persimmon fruit were inoculated per isolate. Three fruit were inoculated similarly with sterile, distilled water as the control treatment. After 1 month of incubation in a moist chamber at 22°C, the same fungal fruiting symptoms were reproduced as observed in the orchards, and the fungus was reisolated from these symptoms, but not from the control fruit, which were asymptomatic. On the basis of morphological characteristics of the fungal colonies, ITS sequence, and pathogenicity to persimmon fruit, the fungus was identified as Z. wisconsinensis (1). Flyspeck is readily isolated from sweet persimmon fruit in Korea and other sweet persimmon growing regions (3). The exposure of fruit to unusual weather conditions in Korea in recent years, including drought, and low-temperature and low-light situations in late spring, which are favorable for flyspeck, might be associated with an increase in occurrence of flyspeck on sweet persimmon fruit in Korea. To our knowledge, this is the first report of Z. wisconsinensis causing flyspeck on sweet persimmon in Korea. References: (1) J. C. Batzer et al. Mycologia 100:246, 2008. (2) FAOSTAT Database. Retrieved from http://faostat.fao.org/ , 2008. (3) H. Nasu and H. Kunoh. Plant Dis. 71:361, 1987. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


2017 ◽  
Vol 150 (2) ◽  
pp. 363-374 ◽  
Author(s):  
K. M. S. Tennakoon ◽  
Hayley J. Ridgway ◽  
Marlene V. Jaspers ◽  
E. Eirian Jones

2021 ◽  
pp. 118411
Author(s):  
Nerea Muñoz-Almagro ◽  
Mario Vendrell-Calatayud ◽  
Pablo Méndez-Albiñana ◽  
Rodrigo Moreno ◽  
M. Pilar Cano ◽  
...  

2003 ◽  
pp. 213-217 ◽  
Author(s):  
T. Katagiri ◽  
Y. Satoh ◽  
T. Fukuda ◽  
I. Kataoka
Keyword(s):  

Author(s):  
Claudia Giovagnoli-Vicuña ◽  
Nelson O. Moraga ◽  
Vilbett Briones-Labarca ◽  
Pablo Pacheco-Pérez

Abstract The influence of drying on the color, porosity, shrinkage and moisture of persimmon fruit during convective drying was determined by computer vision. The experiments were performed with persimmon fruit that were cut into slab 20 × 20 mm, which were arranged into a bigger slab, 60 × 60 mm. Drying process was carried out at 60 °C. Noticeable changes in quality parameters (color, porosity and shrinkage) could be observed during the drying process, where the central region of the sample evidenced less changes. Persimmon’s physical properties were experimentally obtained as the temperature function and heat and mass convective coefficients were adjusted as a time function. A numerical simulation using the Finite Volume Method allowed to describe the evolution of temperature and moisture content distributions during drying. The numerical and experimental results of temperature and moisture during persimmon drying were found to be in a good agreement.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0194326 ◽  
Author(s):  
Rong Jin ◽  
Qing-gang Zhu ◽  
Xin-yue Shen ◽  
Miao-miao Wang ◽  
Wajeeha Jamil ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 996-1005 ◽  
Author(s):  
Ana L. Valencia ◽  
Pilar M. Gil ◽  
Bernardo A. Latorre ◽  
I. Marlene Rosales

Several species of the Botryosphaeriaceae family have been associated with branch canker, dieback, and stem end rot in avocado (Persea americana Mill.). In Chile, the incidence of diseases affecting the avocado tree increased from 2011 to 2016, which coincided with a severe drought that affected avocado production. Moreover, distant countries importing avocados from Chile also reported an increase of stem end rot of ripe avocados. Therefore, the aims of this study were to identify the pathogen species associated with branch canker, dieback, and stem end rot of avocado in Chile and to study their pathogenicity. This study was conducted between 2015 and 2016 in ‘Hass’ avocado orchards located in the main avocado-producing regions in Chile. A diverse collection of fungal species was recovered from both necrotic woody tissue and necrotic tissue on harvested ripe fruit. On the basis of morphology and phylogenetic analyses of the internal transcribed spacer region (ITS1-5.8S-ITS2) and the translation elongation factor 1-α (TEF1-α) gene, eight species in the Botryosphaeriaceae family were identified: Diplodia mutila, D. pseudoseriata, D. seriata, Dothiorella iberica, Lasiodiplodia theobromae, Neofusicoccum australe, N. nonquaesitum, and N. parvum. For each of these species, pathogenicity studies were conducted on 1-year-old healthy Hass avocado plants. All isolates produced brown gum exudate and caused necrosis in the vascular system 3 weeks after inoculation. N. nonquaesitum, N. parvum, and D. pseudoseriata were the most virulent species. Necrotic lesions and cavities with white mycelia near the peduncle union were observed on Hass avocado fruit inoculated postharvest. L. theobromae, N. australe, and N. parvum were significantly more virulent than the other tested species in the Botryosphaeriaceae family. This study identified and characterized the pathogenicity of Botryosphaeriaceae species in Chile, which will prove useful to future research on these pathogens directed at establishing effective control strategies in avocado.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 634-634 ◽  
Author(s):  
S. M. Williamson ◽  
T. B. Sutton

Persimmon trees are important for their fruit as well as their colorful fruit and foliage in the fall. Persimmon fruit (Japanese persimmon, Diospyros kaki cv. Fuyu) were collected in November 2008 from a tree in Windsor, NC, located in the Coastal Plain. Fruit were not symptomatic on the tree but developed dark lesions after harvest. Isolations from six fruit yielded seven isolates of Colletotrichum acutatum J. H. Simmonds. After incubation at 25°C under continuous light for 15 days on potato dextrose agar (PDA), all isolates had gray aerial mycelium, but the inverse sides of the plates of six isolates were maroon and one was beige. Masses of salmon-colored conidia were formed first in the center of the colonies, then were observed scattered across the colonies in older cultures. Conidia were hyaline, one-celled, elliptic with one or both ends pointed, and measured 8.1 to 16.3 × 3.1 to 5 μm. Setae and sclerotia were not observed. There were also dark structures measuring 1 to 10 mm that were partially embedded in the agar that contained conidia. Cultural and conidial characteristics of the isolates were similar to those of C. acutatum (3). PCR amplification was performed with the species-specific primer pair CaInt2/ITS4 (2) and genomic DNA from the original isolates and isolates obtained from inoculated fruit. An amplification product of approximately 490 bp, which is specific for C. acutatum, was observed. To fulfill Koch's postulates, persimmon fruit obtained from the grocery store were surface disinfested with 0.5% sodium hypochlorite and sterile filter paper disks dipped in conidial suspensions (1 × 105 conidia/ml) of two C. acutatum isolates (maroon and beige reverse) or sterile, deionized water were placed on the fruit. Three fruit were inoculated per treatment and the disks were placed on four locations on each fruit. Parafilm was wrapped around the diameter of the fruit to keep the filter paper disks moist and in place. Fruit were placed in moist chambers and incubated at 25°C. After 3 days, the Parafilm was removed and the fruit returned to the moist chambers. Small, dark lesions were observed on fruit inoculated with each isolate of C. acutatum when the filter paper disks were removed. Ten days after inoculation, dark lesions and acervuli with salmon-colored masses of conidia were observed on fruit inoculated with both isolates of C. acutatum and the fruit were soft. After 12 days, there were abundant masses of conidia and the inoculated areas were decayed. Control fruit remained firm and did not develop symptoms. Cultures obtained from the fruit and the conidia produced were typical of the isolates used to inoculate the fruit. C. acutatum has been reported to cause fruit rot on persimmon fruit in New Zealand (1). To our knowledge, this is the first report of C. acutatum on persimmon fruit in the United States. References: (1) R. Lardner et al. Mycol. Res. 103:275, 1999. (2) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996. (3) B. C. Sutton. Page 523 in: Coelomycetes. Commonwealth Agricultural Bureaux, Great Britain. 1980.


Sign in / Sign up

Export Citation Format

Share Document