Effect of low‐nutrient‐density diet with probiotic mixture ( Bacillus subtilis ms1, B. licheniformis SF5‐1, and Saccharomyces cerevisiae ) supplementation on performance of weaner pigs

Author(s):  
Vetriselvi Sampath ◽  
Byoung Duk Ha ◽  
Sumya Kibria ◽  
In Ho Kim
Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 585
Author(s):  
Marie-Louise Heymich ◽  
Laura Nißl ◽  
Dominik Hahn ◽  
Matthias Noll ◽  
Monika Pischetsrieder

The fight against food waste benefits from novel agents inhibiting spoilage. The present study investigated the preservative potential of the antimicrobial peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) recently identified in chickpea legumin hydrolysates. Checkerboard assays revealed strong additive antimicrobial effects of Leg1/Leg2 with sodium benzoate against Escherichia coli and Bacillus subtilis with fractional inhibitory concentrations of 0.625 and 0.75. Additionally, Leg1/Leg2 displayed antifungal activity with minimum inhibitory concentrations of 500/250 µM against Saccharomyces cerevisiae and 250/125 µM against Zygosaccharomyces bailii. In contrast, no cytotoxic effects were observed against human Caco-2 cells at concentrations below 2000 µM (Leg1) and 1000 µM (Leg2). Particularly Leg2 showed antioxidative activity by radical scavenging and reducing mechanisms (maximally 91.5/86.3% compared to 91.2/94.7% for the control ascorbic acid). The present results demonstrate that Leg1/Leg2 have the potential to be applied as preservatives protecting food and other products against bacterial, fungal and oxidative spoilage.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 193-195
Author(s):  
Vetriselvi Sampath ◽  
Hyun Ju Park ◽  
Yong min Kim ◽  
Je Min Ahn ◽  
Inho Kim

Abstract BACKGROUND: A total of one hundred and forty, 28 d-old weaner pigs [Duroc x (Yorkshire x Landrace)] with initial body weight (BW) of 6.56±1.25kg were used in a six-week treatment (7 replicate pens per treatment; barrows, and 2 gilts/pen) to evaluate the effect of low nutrient density diet supplement with probiotic mixture supplementation on the growth performance, nutrient digestibility, fecal microbial, and gas emission of weaner pigs. RESULTS: Pigs fed low-density diet with probiotic mixture supplementation had linearly increased (P = 0.028, 0.014) the body weight (BW) at weeks 3, and 6. Moreover, average daily gain (ADG) was linearly improved (P=0.018, 0.014, 0.014) at week 3, 6, and overall experiment. However, there were no interactive effects found on the nutrient digestibility of dry matter (DM), nitrogen (N) and energy (E) throughout the experiment. Dietary inclusion of low-density diet with probiotic mixture supplementation has improved the fecal lactobacillus counts linearly, but E. coli was unaffected during the trail. On day 42, Ammonium gas emission was significantly decrease in pigs fed a low-density diet with probiotic mixture supplementation. However, H2S, acetic acid, and CO2 were not significantly affected by the probiotic mixture supplementation diet. CONCLUSION: Low-density diet with probiotic mixture supplementation had positively affected the growth performance, fecal microbial, and fecal gas emission on weaner pigs.


1984 ◽  
Vol 4 (11) ◽  
pp. 2535-2539
Author(s):  
W Y Chooi ◽  
E Otaka

Specific antibodies directed against Drosophila melanogaster acidic ribosomal protein S14 were used in a comparative study of eucaryotic and procaryotic ribosomes by immunoblotting and enzyme-linked immunosorbent assays. Common antigenic determinants and, thus, structural homology were found between D. melanogaster, Saccharomyces cerevisiae (S25), rabbit liver (S12), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomes.


1984 ◽  
Vol 4 (11) ◽  
pp. 2535-2539 ◽  
Author(s):  
W Y Chooi ◽  
E Otaka

Specific antibodies directed against Drosophila melanogaster acidic ribosomal protein S14 were used in a comparative study of eucaryotic and procaryotic ribosomes by immunoblotting and enzyme-linked immunosorbent assays. Common antigenic determinants and, thus, structural homology were found between D. melanogaster, Saccharomyces cerevisiae (S25), rabbit liver (S12), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomes.


Sign in / Sign up

Export Citation Format

Share Document