Disentangling tree species identity and richness effects on the herb layer: first results from a German tree diversity experiment

2015 ◽  
Vol 26 (4) ◽  
pp. 742-755 ◽  
Author(s):  
Evy Ampoorter ◽  
Lander Baeten ◽  
Margot Vanhellemont ◽  
Helge Bruelheide ◽  
Michael Scherer-Lorenzen ◽  
...  
2020 ◽  
Vol 6 (4) ◽  
pp. 243-259 ◽  
Author(s):  
Michael Staab ◽  
Andreas Schuldt

Abstract Purpose of Review Natural enemies are an important component for forest functioning. By consuming herbivores, they can be effective top-down regulators of potential pest species. Tree mixtures are generally expected to have larger predator and parasitoid populations compared to monocultures. This assumption is based on the “enemies” hypothesis, a classical ecological concept predicting a positive relationship between plant diversity (and complexity) and natural enemies, which, in turn, should increase top-down control in more diverse environments. However, the “enemies” hypothesis has mostly been tested and supported in relatively simple agricultural ecosystems. Until recently, research in forests was sparse. We summarize the upcoming knowledge-base for forests and identify forest characteristics likely shaping relationships between tree diversity, natural enemies (abundance, species richness, diversity), and top-down control. We further identify possible implications for mixed species forestry and key knowledge gaps. Recent Findings Tree diversity (almost exclusively quantified as tree species richness) does not consistently increase enemy abundance, diversity, or result in herbivore control. Tests of the “enemies” hypothesis are largely based on aboveground natural enemies (mainly generalists) and have highly variable outcomes across taxa and study systems, sometimes even finding a decrease in predator diversity with increasing tree diversity. Recurrent effects of tree species identity and composition indicate that a closer focus on tree functional and phylogenetic diversity might help to foster a mechanistic understanding of the specific circumstances under which tree diversity can promote top-down control. Summary Our review suggests that the “enemies” hypothesis may not unambiguously apply to forests. With trees as structurally complex organisms, even low-diversity forests can maintain a high degree of habitat heterogeneity and may provide niches for many predator and parasitoid species, possibly blurring correlations between tree and natural enemy diversity. Several further factors, such as latitude, identity effects, intraguild predation, or functional and phylogenetic components of biodiversity, may confound the predictions of the “enemies” hypothesis. We identify topics needing more research to fully understand under which conditions tree diversity increases natural enemy diversity and top-down control—knowledge that will be crucial for forest management.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Marco Diers ◽  
Robert Weigel ◽  
Heike Culmsee ◽  
Christoph Leuschner

Abstract Background Organic carbon stored in forest soils (SOC) represents an important element of the global C cycle. It is thought that the C storage capacity of the stable pool can be enhanced by increasing forest productivity, but empirical evidence in support of this assumption from forests differing in tree species and productivity, while stocking on similar substrate, is scarce. Methods We determined the stocks of SOC and macro-nutrients (nitrogen, phosphorus, calcium, potassium and magnesium) in nine paired European beech/Scots pine stands on similar Pleistocene sandy substrates across a precipitation gradient (560–820 mm∙yr− 1) in northern Germany and explored the influence of tree species, forest history, climate, and soil pH on SOC and nutrient pools. Results While the organic layer stored on average about 80% more C under pine than beech, the pools of SOC and total N in the total profile (organic layer plus mineral soil measured to 60 cm and extrapolated to 100 cm) were greater under pine by about 40% and 20%, respectively. This contrasts with a higher annual production of foliar litter and a much higher fine root biomass in beech stands, indicating that soil C sequestration is unrelated to the production of leaf litter and fine roots in these stands on Pleistocene sandy soils. The pools of available P and basic cations tended to be higher under beech. Neither precipitation nor temperature influenced the SOC pool, whereas tree species was a key driver. An extended data set (which included additional pine stands established more recently on former agricultural soil) revealed that, besides tree species identity, forest continuity is an important factor determining the SOC and nutrient pools of these stands. Conclusion We conclude that tree species identity can exert a considerable influence on the stocks of SOC and macronutrients, which may be unrelated to productivity but closely linked to species-specific forest management histories, thus masking weaker climate and soil chemistry effects on pool sizes.


2021 ◽  
Author(s):  
Kaja Rola ◽  
Vítězslav Plášek ◽  
Katarzyna Rożek ◽  
Szymon Zubek

Abstract Aim Overstorey tree species influence both soil properties and microclimate conditions in the forest floor, which in turn can induce changes in ground bryophyte communities. The aim of the study was to investigate the effect of tree species identity and the most important habitat factors influencing understorey bryophytes. Methods We assessed the effect of 14 tree species and related habitat parameters, including soil parameters, vascular plant presence and light intensity on bryophytes in monospecific plots covered by nearly fifty-year-old trees in the Siemianice Experimental Forest (Poland). Results The canopy tree species determined bryophyte species richness and cover. The strongest differences were observed between plots with deciduous and coniferous trees. Soils with a more acidic pH and lower content of macronutrients supported larger bryophyte coverage. We also found a positive correlations between vascular plants and availability of light as well as bryophyte species richness. Conclusion Tree species identity and differences in habitat conditions in the forest floor lead to changes of ground bryophyte richness, cover and species composition. Consequently, the changes in the dominant tree species in the stand may result in significant repercussions on ground bryophyte communities. We indicated that the introduction of alien tree species, i.e. Quercus rubra, has an adverse effect on bryophyte communities and suggested that the selection of tree species that contribute to the community consistent with the potential natural vegetation is highly beneficial for maintaining ground bryophyte biodiversity.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4754 ◽  
Author(s):  
Lucía Vivanco ◽  
Nicolás Rascovan ◽  
Amy T. Austin

Plant–microbial interactions in the litter layer represent one of the most relevant interactions for biogeochemical cycling as litter decomposition is a key first step in carbon and nitrogen turnover. However, our understanding of these interactions in the litter layer remains elusive. In an old-growth mixed Nothofagus forest in Patagonia, we studied the effects of single tree species identity and the mixture of three tree species on the fungal and bacterial composition in the litter layer. We also evaluated the effects of nitrogen (N) addition on these plant–microbial interactions. In addition, we compared the magnitude of stimulation of litter decomposition due to home field advantage (HFA, decomposition occurs more rapidly when litter is placed beneath the plant species from which it had been derived than beneath a different plant species) and N addition that we previously demonstrated in this same forest, and used microbial information to interpret these results. Tree species identity had a strong and significant effect on the composition of fungal communities but not on the bacterial community of the litter layer. The microbial composition of the litter layer under the tree species mixture show an averaged contribution of each single tree species. N addition did not erase the plant species footprint on the fungal community, and neither altered the bacterial community. N addition stimulated litter decomposition as much as HFA for certain tree species, but the mechanisms behind N and HFA stimulation may have differed. Our results suggest that stimulation of decomposition from N addition might have occurred due to increased microbial activity without large changes in microbial community composition, while HFA may have resulted principally from plant species’ effects on the litter fungal community. Together, our results suggest that plant–microbial interactions can be an unconsidered driver of litter decomposition in temperate forests.


2021 ◽  
Author(s):  
Stav Livne- Luzon ◽  
Rotem Cahanovitc ◽  
Tamir Klein

<p>EMF play an important role in forests around the globe, by improving tree nutrition and water supply, as well as connecting different tree species through common mycorrhizal networks (CMN's). However, the extent to which EMF control resource sharing within these networks has not yet been thoroughly addressed. We constructed a simple network of tree-fungus-tree and monitored carbon flow from a <sup>13</sup>CO<sub>2</sub> labeled donor tree to the final recipient.  DNA Stable Isotope Probing (DNA-SIP) of ectomycorrhizal root tips was used to identify the main fungal symbionts involved in carbon transfer among trees. We used pairs of inter and intra-specie Pinus halepensis and Quercus calliprinos saplings, and examined the carbon dynamics for 40 days within the leaf, stem and root tissues. The peak of <sup>13</sup>C in the roots of the donor trees was around day 4 post labeling, while the recipient roots peaked at day 9 with observed differences between pairs. The intrinsic tree carbon pool, and not the tree species identity, was the main factor governing carbon transfer between trees. Finally, we were able to identify the main fungal symbionts enriched with <sup>13</sup>C. Our results add the "missing piece of the puzzle" by linking specific mycorrhizal species to carbon transfer within CMN's.</p>


Ecosystems ◽  
2016 ◽  
Vol 19 (4) ◽  
pp. 645-660 ◽  
Author(s):  
Seid Muhie Dawud ◽  
Karsten Raulund-Rasmussen ◽  
Timo Domisch ◽  
Leena Finér ◽  
Bogdan Jaroszewicz ◽  
...  

2017 ◽  
Vol 7 (24) ◽  
pp. 10861-10870 ◽  
Author(s):  
Bram K. Sercu ◽  
Lander Baeten ◽  
Frieke van Coillie ◽  
An Martel ◽  
Luc Lens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document