Isolation of Desulfovibrio spp. from human gut microbiota using a next‐generation sequencing directed culture method

2019 ◽  
Vol 68 (6) ◽  
pp. 553-561 ◽  
Author(s):  
Y.‐R. Chen ◽  
L.‐Z. Zhou ◽  
S.‐T. Fang ◽  
H.‐Y. Long ◽  
J.‐Y. Chen ◽  
...  
2015 ◽  
Vol 6 (5) ◽  
pp. 657-659 ◽  
Author(s):  
E. Avershina ◽  
K. Rudi

A key message from a range of high profile next generation sequencing studies on the human microbiota is that it composes a tremendously rich community of more than 1000 species within each one of us. Although more recent studies have shown estimates of between 100 and 200 species per individual, this has not yet been made clear in the literature. Currently, the most widely accepted estimate of species richness is therefore five to ten times too high. Here, we will review the different estimates of species richness in the literature, address potential sources of artefacts, the reluctance to correct these, and provide suggestions for future directions.


2021 ◽  
Author(s):  
Sabine Hazan ◽  
Sheldon Jordan

Abstract Background: Reports have been surfacing surrounding CNS-associated symptoms in individuals affected by coronavirus disease 19 (COVID-19). Tourette syndrome is a neuropsychiatric disorder with usual onset in childhood. Gut microbiota can affect central physiology and function via the microbiota-gut-brain axis. The authors of this case report describe Tourette’s-like symptoms in a patient resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupting gut microbiota. Case Presentation: This case involves a 16-year-old female that developed acute onset Tourette’s-like symptoms along with neuropsychiatric symptoms after exposure to and infection from SARS-CoV-2. The patient had negative nasopharyngeal (NP) real-time reverse transcription-PCR (RT-PCR) tests for SARS-CoV-2 on five occasions from August of 2020 through June of 2021. The patient’s symptoms continued to worsen over the next six months until next-generation sequencing (NGS) revealed SARS-CoV-2 in her stool. Her treatment was adjusted as NGS revealed SARS-CoV-2 in her stool. Repair of the gastrointestinal microbiota, treatment with nutraceutical and pharmaceutical agents, as well as alterations in her surroundings resulted in dramatic improvement in the microbiome and a significant reduction of symptoms.Discussion: The use of (RT-PCR) testing to determine the presence or absence of SARS-CoV-2 may be inadequate and inaccurate for individuals that have been exposed to the virus. In addition, the impact of SARS-CoV-2 infection of the GI tract may cause significant havoc in the gut microbiota. Additional testing, eradication of infectious agents, as well as restoration of the gut microbiome are needed to effectively manage and treat this condition. The patient’s symptoms worsened over the next six months until next-generation sequencing (NGS) revealed SARS-CoV-2 in her stool and her treatment was adjusted. Treatment with nutraceuticals and alterations in her surroundings was followed by a more normal microbiome and a dramatic reduction in symptoms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Silvia Molino ◽  
Alberto Lerma-Aguilera ◽  
Nuria Jiménez-Hernández ◽  
María José Gosalbes ◽  
José Ángel Rufián-Henares ◽  
...  

Food and food bioactive components are major drivers of modulation of the human gut microbiota. Tannin extracts consist of a mix of bioactive compounds, which are already exploited in the food industry for their chemical and sensorial properties. The aim of our study was to explore the viability of associations between tannin wood extracts of different origin and food as gut microbiota modulators. 16S rRNA amplicon next-generation sequencing (NGS) was used to test the effects on the gut microbiota of tannin extracts from quebracho, chestnut, and tara associated with commercial food products with different composition in macronutrients. The different tannin-enriched and non-enriched foods were submitted to in vitro digestion and fermentation by the gut microbiota of healthy subjects. The profile of the short chain fatty acids (SCFAs) produced by the microbiota was also investigated. The presence of tannin extracts in food promoted an increase of the relative abundance of the genus Akkermansia, recognized as a marker of a healthy gut, and of various members of the Lachnospiraceae and Ruminococcaceae families, involved in SCFA production. The enrichment of foods with tannin extracts had a booster effect on the production of SCFAs, without altering the profile given by the foods alone. These preliminary results suggest a positive modulation of the gut microbiota with potential benefits for human health through the enrichment of foods with tannin extracts.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Morgane Mailhe ◽  
Davide Ricaboni ◽  
Véronique Vitton ◽  
Jean-Michel Gonzalez ◽  
Dipankar Bachar ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157513 ◽  
Author(s):  
Felipe Pinheiro de Oliveira ◽  
Roberta Hack Mendes ◽  
Priscila Thiago Dobbler ◽  
Volker Mai ◽  
Victor Salter Pylro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document