scholarly journals Mean–field moral hazard for optimal energy demand response management

2020 ◽  
Author(s):  
Romuald Élie ◽  
Emma Hubert ◽  
Thibaut Mastrolia ◽  
Dylan Possamaï
2015 ◽  
Vol 48 (8) ◽  
pp. 385-390 ◽  
Author(s):  
Chudong Tong ◽  
Nael H. El-Farra ◽  
Ahmet Palazoglu

Microgrid Energy Management is done to optimize microgrid performance. Power from Wind Turbines (WT) and Photo Voltaic (PV) modules into a microgrid addresses both factors of environmental concerns as well as sustainable energy production. Point of coupling with utility main grid is disconnected when microgrid functions in autonomous mode and it enhances steady microgrid operation when traditional grids face blackouts. Clean and renewable energy sources being easily affected by variation in weather condition, so taking into account of this uncertainty is essential while formulating power flow problem which can be done through demand response programs. This paper aims to investigate results obtained from research of several researchers scrutinizingly and analyzed critically for optimal energy management in microgrids using demand response programs. This paper also highlights the worthy findings of possible areas of research that would enhance the use of demand side management through demand response programs in microgrids.


2018 ◽  
Vol 30 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Paraskevas Panagiotidis ◽  
Andrew Effraimis ◽  
George A Xydis

The main aim of this work is to reduce electricity consumption for consumers with an emphasis on the residential sector in periods of increased demand. Efforts are focused on creating a methodology in order to statistically analyse energy demand data and come up with forecasting methodology/pattern that will allow end-users to organize their consumption. This research presents an evaluation of potential Demand Response programmes in Greek households, in a real-time pricing market model through the use of a forecasting methodology. Long-term Demand Side Management programs or Demand Response strategies allow end-users to control their consumption based on the bidirectional communication with the system operator, improving not only the efficiency of the system but more importantly, the residential sector-associated costs from the end-users’ side. The demand load data were analysed and categorised in order to form profiles and better understand the consumption patterns. Different methods were tested in order to come up with the optimal result. The Auto Regressive Integrated Moving Average modelling methodology was selected in order to ensure forecasts production on load demand with the maximum accuracy.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 994 ◽  
Author(s):  
Nan Zhao ◽  
Beibei Wang ◽  
Mingshen Wang

With the generalization of the integrated energy system (IES) on the demand side, multi-energy users may participate in a demand response (DR) program based on their flexible consumption of energy. However, since users could choose using alternative energy or transfer energy consumption to other time periods, obtaining response characteristics of this type of DR usually appears more complicated than traditional single-energy DR. To obtain the response characteristic, a response model for multi-energy DR, which reflects the relations between electricity (gas) response and time-of-use (TOU) electric prices, is proposed. The model is characterized by several coefficients which are associated with electric and heat efficiency. The model is obtained through the derivation process of optimizing user’s energy-using problem. Then, as a typical application of the response model, the TOU electric pricing for multi-energy users is able to be formulated by an interior point algorithm after giving the Kuhn-Tucker conditions of the optimal problem. Typical results of the optimal TOU pricing are further illustrated through the formulation on a PJM five-bus test system. It demonstrates that optimal TOU pricing can be effectively pre-calculated by the utility company using the proposed response model.


2020 ◽  
Vol 12 (14) ◽  
pp. 5561 ◽  
Author(s):  
Bhagya Nathali Silva ◽  
Murad Khan ◽  
Kijun Han

The emergence of the Internet of Things (IoT) notion pioneered the implementation of various smart environments. Smart environments intelligibly accommodate inhabitants’ requirements. With rapid resource shrinkage, energy management has recently become an essential concern for all smart environments. Energy management aims to assure ecosystem sustainability, while benefiting both consumers and utility providers. Although energy management emerged as a solution that addresses challenges that arise with increasing energy demand and resource deterioration, further evolution and expansion are hindered due to technological, economical, and social barriers. This review aggregates energy management approaches in smart environments and extensively reviews a variety of recent literature reports on peak load shaving and demand response. Significant benefits and challenges of these energy management strategies were identified through the literature survey. Finally, a critical discussion summarizing trends and opportunities is given as a thread for future research.


Sign in / Sign up

Export Citation Format

Share Document