scholarly journals PATAN‐domain regulators interact with the Type IV pilus motor to control phototactic orientation in the cyanobacterium Synechocystis

2021 ◽  
Author(s):  
Yu Han ◽  
Annik Jakob ◽  
Sophia Engel ◽  
Annegret Wilde ◽  
Schuergers Nils
Keyword(s):  
PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e96419 ◽  
Author(s):  
Åshild Vik ◽  
Jan Haug Anonsen ◽  
Finn Erik Aas ◽  
Finn Terje Hegge ◽  
Norbert Roos ◽  
...  

Microbiology ◽  
2021 ◽  
Vol 167 (9) ◽  
Author(s):  
Marie Zachary ◽  
Susanne Bauer ◽  
Maximilian Klepsch ◽  
Katharina Wagler ◽  
Bruno Hüttel ◽  
...  

Non-coding regulatory RNAs mediate post-transcriptional gene expression control by a variety of mechanisms relying mostly on base-pairing interactions with a target mRNA. Though a plethora of putative non-coding regulatory RNAs have been identified by global transcriptome analysis, knowledge about riboregulation in the pathogenic Neisseriae is still limited. Here we report the initial characterization of a pair of sRNAs of N. gonorrhoeae , TfpR1 and TfpR2, which exhibit a similar secondary structure and identical single-stranded seed regions, and therefore might be considered as sibling sRNAs. By combination of in silico target prediction and sRNA pulse expression followed by differential RNA sequencing we identified target genes of TfpR1 which are involved in type IV pilus biogenesis and DNA damage repair. We provide evidence that members of the TfpR1 regulon can also be targeted by the sibling TfpR2.


2007 ◽  
Vol 189 (17) ◽  
pp. 6389-6396 ◽  
Author(s):  
Richard F. Collins ◽  
Muhammad Saleem ◽  
Jeremy P. Derrick

ABSTRACT Type IV pili are surface-exposed retractable fibers which play a key role in the pathogenesis of Neisseria meningitidis and other gram-negative pathogens. PilG is an integral inner membrane protein and a component of the type IV pilus biogenesis system. It is related by sequence to the extensive GspF family of secretory proteins, which are involved in type II secretion processes. PilG was overexpressed and purified from Escherichia coli membranes by detergent extraction and metal ion affinity chromatography. Analysis of the purified protein by perfluoro-octanoic acid polyacrylamide gel electrophoresis showed that PilG formed dimers and tetramers. A three-dimensional (3-D) electron microscopy structure of the PilG multimer was determined using single-particle averaging applied to samples visualized by negative staining. Symmetry analysis of the unsymmetrized 3-D volume provided further evidence that the PilG multimer is a tetramer. The reconstruction also revealed an asymmetric bilobed structure approximately 125 Å in length and 80 Å in width. The larger lobe within the structure was identified as the N terminus by location of Ni-nitrilotriacetic acid nanogold particles to the N-terminal polyhistidine tag. We propose that the smaller lobe corresponds to the periplasmic domain of the protein, with the narrower “waist” region being the transmembrane section. This constitutes the first report of a 3-D structure of a member of the GspF family and suggests a physical basis for the role of the protein in linking cytoplasmic and periplasmic protein components of the type II secretion and type IV pilus biogenesis systems.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0144514 ◽  
Author(s):  
Mark Sistrom ◽  
Derek Park ◽  
Heath E. O’Brien ◽  
Zheng Wang ◽  
David S. Guttman ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182139 ◽  
Author(s):  
Colleen G. Leong ◽  
Rebecca A. Bloomfield ◽  
Caroline A. Boyd ◽  
Amber J. Dornbusch ◽  
Leah Lieber ◽  
...  

2016 ◽  
Vol 2 (3) ◽  
Author(s):  
Nicole Poweleit ◽  
Peng Ge ◽  
Hong H. Nguyen ◽  
Rachel R. Ogorzalek Loo ◽  
Robert P. Gunsalus ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew McCallum ◽  
Samir Benlekbir ◽  
Sheryl Nguyen ◽  
Stephanie Tammam ◽  
John L. Rubinstein ◽  
...  

AbstractType IV pilus-like systems are protein complexes that polymerize pilin fibres. They are critical for virulence in many bacterial pathogens. Pilin polymerization and depolymerization are powered by motor ATPases of the PilT/VirB11-like family. This family is thought to operate with C2 symmetry; however, most of these ATPases crystallize with either C3 or C6 symmetric conformations. The relevance of these conformations is unclear. Here, we determine the X-ray structures of PilT in four unique conformations and use these structures to classify the conformation of available PilT/VirB11-like family member structures. Single particle electron cryomicroscopy (cryoEM) structures of PilT reveal condition-dependent preferences for C2,C3, and C6 conformations. The physiologic importance of these conformations is validated by coevolution analysis and functional studies of point mutants, identifying a rare gain-of-function mutation that favours the C2 conformation. With these data, we propose a comprehensive model of PilT function with broad implications for PilT/VirB11-like family members.


Sign in / Sign up

Export Citation Format

Share Document