scholarly journals The role of core and accessory type IV pilus genes in natural transformation and twitching motility in the bacterium Acinetobacter baylyi

PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182139 ◽  
Author(s):  
Colleen G. Leong ◽  
Rebecca A. Bloomfield ◽  
Caroline A. Boyd ◽  
Amber J. Dornbusch ◽  
Leah Lieber ◽  
...  
2001 ◽  
Vol 183 (16) ◽  
pp. 4694-4701 ◽  
Author(s):  
Stefan Graupner ◽  
Nicole Weger ◽  
Monika Sohni ◽  
Wilfried Wackernagel

ABSTRACT The ubiquitous species Pseudomonas stutzeri has type IV pili, and these are essential for the natural transformation of the cells. An absolute transformation-deficient mutant obtained after transposon mutagenesis had an insertion in a gene which was termedpilT. The deduced amino acid sequence has identity with PilT of Pseudomonas aeruginosa (94%), Neisseria gonorrhoeae (67%), and other gram-negative species and it contains a nucleotide-binding motif. The mutant was hyperpiliated but defective for further pilus-associated properties, such as twitching motility and plating of pilus-specific phage PO4. [3H]thymidine-labeled DNA was bound by the mutant but not taken up. Downstream of pilT a gene, termedpilU, coding for a putative protein with 88% amino acid identity with PilU of P. aeruginosa was identified. Insertional inactivation did not affect piliation, twitching motility, or PO4 infection but reduced transformation to about 10%. The defect was fully complemented by PilU of nontransformable P. aeruginosa. When thepilAI gene (coding for the type IV pilus prepilin) was manipulated to code for a protein in which the six C-terminal amino acids were replaced by six histidine residues and then expressed from a plasmid, it gave a nonpiliated and twitching motility-defective phenotype in pilAI::Gmr cells but allowed transformability. Moreover, the mutant allele suppressed the absolute transformation deficiency caused by the pilT mutation. Considering the hypothesized role of pilT + in pilus retraction and the presumed requirement of retraction for DNA uptake, it is proposed that the pilT-independent transformation is promoted by PilA mutant protein either as single molecules or as minimal pilin assembly structures in the periplasm which may resemble depolymerized pili and that these cause the outer membrane pores to open for DNA entry.


2013 ◽  
Vol 80 (2) ◽  
pp. 644-652 ◽  
Author(s):  
Ralf Salzer ◽  
Friederike Joos ◽  
Beate Averhoff

ABSTRACTNatural transformation has a large impact on lateral gene flow and has contributed significantly to the ecological diversification and adaptation of bacterial species.Thermus thermophilusHB27 has emerged as the leading model organism for studies of DNA transporters in thermophilic bacteria. Recently, we identified a zinc-binding polymerization nucleoside triphosphatase (NTPase), PilF, which is essential for the transport of DNA through the outer membrane. Here, we present genetic evidence that PilF is also essential for the biogenesis of pili. One of the most challenging questions was whetherT. thermophilushas any depolymerization NTPase acting as a counterplayer of PilF. We identified two depolymerization NTPases, PilT1 (TTC1621) and PilT2 (TTC1415), both of which are required for type IV pilus (T4P)-mediated twitching motility and adhesion but dispensable for natural transformation. This suggests that T4P dynamics are not required for natural transformation. The latter finding is consistent with our suggestion that inT. thermophilus, T4P and natural transformation are linked but distinct systems.


2001 ◽  
Vol 183 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Maria T. Villar ◽  
Rona L. Hirschberg ◽  
Michael R. Schaefer

ABSTRACT The human pathogen Eikenella corrodens expresses type IV pili and exhibits a phase variation involving the irreversible transition from piliated to nonpiliated variants. On solid medium, piliated variants form small (S-phase), corroding colonies whereas nonpiliated variants form large (L-phase), noncorroding colonies. We are studying pilus structure and function in the clinical isolateE. corrodens VA1. Earlier work defined the pilAlocus which includes pilA1, pilA2,pilB, and hagA. Both pilA1 andpilA2 predict a type IV pilin, whereas pilBpredicts a putative pilus assembly protein. The role ofhagA has not been clearly established. That work also confirmed that pilA1 encodes the major pilus protein in this strain and showed that the phase variation involves a posttranslational event in pilus formation. In this study, the function of the individual genes comprising the pilA locus was examined using a recently developed protocol for targeted interposon mutagenesis of S-phase variant VA1-S1. Different pilAmutants were compared to S-phase and L-phase variants for several distinct aspects of phase variation and type IV pilus biosynthesis and function. S-phase cells were characterized by surface pili, competence for natural transformation, and twitching motility, whereas L-phase cells lacked these features. Inactivation of pilA1 yielded a mutant that was phenotypically indistinguishable from L-phase variants, showing that native biosynthesis of the type IV pilus in strain VA1 is dependent on expression of pilA1 and proper export and assembly of PilA1. Inactivation of pilA2 yielded a mutant that was phenotypically indistinguishable from S-phase variants, indicating that pilA2 is not essential for biosynthesis of functionally normal pili. A mutant inactivated forpilB was deficient for twitching motility, suggesting a role for PilB in this pilus-related phenomenon. Inactivation ofhagA, which may encode a tellurite resistance protein, had no effect on pilus structure or function.


2014 ◽  
Vol 60 (3) ◽  
pp. 155-166 ◽  
Author(s):  
Cecily L. Haley ◽  
Cassandra Kruczek ◽  
Uzma Qaisar ◽  
Jane A. Colmer-Hamood ◽  
Abdul N. Hamood

In Pseudomonas aeruginosa, type IV pili (TFP)-dependent twitching motility is required for development of surface-attached biofilm (SABF), yet excessive twitching motility is detrimental once SABF is established. In this study, we show that mucin significantly enhanced twitching motility and decreased SABF formation in strain PAO1 and other P. aeruginosa strains in a concentration-dependent manner. Mucin also disrupted partially established SABF. Our analyses revealed that mucin increased the amount of surface pilin and enhanced transcription of the pilin structural gene pilA. Mucin failed to enhance twitching motility in P. aeruginosa mutants defective in genes within the pilin biogenesis operons pilGHI/pilJK-chpA-E. Furthermore, mucin did not enhance twitching motility nor reduce biofilm development by chelating iron. We also examined the role of the virulence factor regulator Vfr in the effect of mucin. In the presence or absence of mucin, PAOΔvfr produced a significantly reduced SABF. However, mucin partially complemented the twitching motility defect of PAOΔvfr. These results suggest that mucin interferes with SABF formation at specific concentrations by enhancing TFP synthesis and twitching motility, that this effect, which is iron-independent, requires functional Vfr, and only part of the Vfr-dependent effect of mucin on SABF development occurs through twitching motility.


2018 ◽  
Vol 102 (17) ◽  
pp. 7509-7519 ◽  
Author(s):  
Jiaojiao Chen ◽  
Danyu Shen ◽  
Benard Omondi Odhiambo ◽  
Dan Xu ◽  
Sen Han ◽  
...  

2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Prem P. Kandel ◽  
Hongyu Chen ◽  
Leonardo De La Fuente

ABSTRACT Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2. IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.


1998 ◽  
Vol 180 (6) ◽  
pp. 1592-1595 ◽  
Author(s):  
Caroline Link ◽  
Sandra Eickernjäger ◽  
Dirk Porstendörfer ◽  
Beate Averhoff

ABSTRACT A gene (comC) essential for natural transformation was identified in Acinetobacter sp. strain BD413. ComC has a typical leader sequence and is similar to different type IV pilus assembly factors. A comC mutant (T308) is not able to bind or take up DNA but exhibits a piliation phenotype indistinguishable from the transformation wild type as revealed by electron microscopy.


2018 ◽  
Vol 224 ◽  
pp. 17-22 ◽  
Author(s):  
Feng Liu ◽  
Wei Peng ◽  
Ting Liu ◽  
Haixu Zhao ◽  
Kang Yan ◽  
...  

2006 ◽  
Vol 72 (10) ◽  
pp. 6439-6451 ◽  
Author(s):  
Evelyne Krin ◽  
Nesrine Chakroun ◽  
Evelyne Turlin ◽  
Alain Givaudan ◽  
François Gaboriau ◽  
...  

ABSTRACT Bacterial virulence is an integrative process that may involve quorum sensing. In this work, we compared by global expression profiling the wild-type entomopathogenic Photorhabdus luminescens subsp. laumondii TT01 to a luxS-deficient mutant unable to synthesize the type 2 quorum-sensing inducer AI-2. AI-2 was shown to regulate more than 300 targets involved in most compartments and metabolic pathways of the cell. AI-2 is located high in the hierarchy, as it controls the expression of several transcriptional regulators. The regulatory effect of AI-2 appeared to be dose dependent. The luxS-deficient strain exhibited decreased biofilm formation and increased type IV/V pilus-dependent twitching motility. AI-2 activated its own synthesis and transport. It also modulated bioluminescence by regulating the synthesis of spermidine. AI-2 was further shown to increase oxidative stress resistance, which is necessary to overcome part of the innate immune response of the host insect involving reactive oxygen species. Finally, we showed that the luxS-deficient strain had attenuated virulence against the lepidopteran Spodoptera littoralis. We concluded that AI-2 is involved mainly in early steps of insect invasion in P. luminescens.


Sign in / Sign up

Export Citation Format

Share Document