scholarly journals Empfindlichkeit typischer Schweizer Waldbestände auf den Klimawandel

2015 ◽  
Vol 166 (6) ◽  
pp. 408-419 ◽  
Author(s):  
Nicolas Bircher ◽  
Maxime Cailleret ◽  
Markus Huber ◽  
Harald Bugmann

Sensitivity of typical Swiss forest stands to climate change In Switzerland, first climate-induced changes of forest ecosystems can be observed. However, it is widely unknown how and to what extent the typical (widespread) forest stands will respond to future climate change. With the data of the third National forest inventory and the forest succession model ForClim we examined the development 71 typical stands under current and future climatic conditions (A2 emission scenario) with and without management, respectively. The simulations show a weak response until the middle of the century. In contrast, an increased sensitivity towards the end of the century becomes apparent, expressed by declines of basal area at lower elevations, respectively increases at higher elevations. The responses of forest stands are depending on site-specific characteristics. For example, Norway spruce is expected to decline up to higher elevations. Our results show an increase of deciduous tree species in higher elevation zones, particularly if management is applied. The impacts of climate change on important forest ecosystems services vary along a bioclimatic elevation gradient. Thereby, current forest management shows approaches how to at least partly counteract adverse effects of climate change. However, target- and site-specific strategies are needed and, particularly with regard to lower elevations, more knowledge on the potential of tree species to adapt is required.

2019 ◽  
Author(s):  
Franziska M. Willems ◽  
J.F. Scheepens ◽  
Christian Ammer ◽  
Svenja Block ◽  
Anna Bucharova ◽  
...  

AbstractMany organisms respond to anthropogenic environmental change through shifts in their phenology. In plants, flowering is largely driven by temperature, and therefore affected by climate change. However, on smaller scales climatic conditions are also influenced by other factors, including habitat structure. A group of plants with a particularly distinct phenology are the understorey herbs in temperate forests. In these forests, management alters tree species composition and stand structure and, as a consequence, light conditions and microclimate. Forest management should thus also affect the phenology of understorey herbs. To test this, we recorded the flowering phenology of 20 early-flowering herbs on 100 forest plots varying in management intensity, from near-natural to intensely managed forests, in Central and Southern Germany. We found that in forest stands with a high management intensity the plants flowered on average about two weeks later than in unmanaged forests. This was largely because management also affected microclimate (e.g. spring temperatures of 5.9 °C in managed coniferous, 6.7 in managed deciduous and 7.0 °C in unmanaged deciduous plots), which in turn affected phenology, with plants flowering later on colder and moister forest stands (+4.5 days per −1°C and 2.7 days per 10 % humidity increase). Among forest characteristics, the main tree species as well as the age, overall crown projection area, structural complexity and spatial distribution of trees had the greatest influence on microclimate. Our study demonstrates that forest management alters plant phenology, with potential far-reaching consequences for the ecology and evolution of understorey communities. More generally, our study suggests that besides climate change other drivers of environmental change, too, can influence the phenology of organisms.


2017 ◽  
Vol 11 (2) ◽  
pp. 63-75
Author(s):  
Nedealcov Maria ◽  
Donica Ala ◽  
Brașoveanu Valeriu ◽  
Grigoraș Nicolae ◽  
Deomidova Cristina

Abstract Assessment activity and surveillance of the forests health, held at the global, regional and local level, has continuously developed, culminating in the current period with interdisciplinary and extensive scientific researches, that evaluate the effects of the main factors on forest ecosystems state, in particular, air pollution and climate change. Scientific researches have shown that among trees ecophysiological processes, forest life processes and meteorological parameters there are direct dependences, particularly in the case of trees supply with water during the growing period (May-July), with major influences for critical months (July and August), which have a decisive impact on growth, vitality and production of organic matter in forests. Dry years, from the beginning of the third millennium can lead to a decrease of mesophilic forests area (beech, sessile oak and penduculate oak), which will tend to retreat towards the center of the area (central Europe) in favor of thermophilic forests with pubescent oak. It was determined that a most significant negative impact of climate aridization will feel the forest ecosystems from Southern and central regions of country (conditioned by the mean air temperature (July-August), monthly rainfall (May-August), evapotranspiration and geographic latitude), and less - the Northern part of the country (Forestry Aridity Index calculated for 3 experimental stations revealed variations of this index between 7.8 - 8.3 - in the Central part of country, and 8.4 - 8.6 - for Southern part of country). At the same time the impact of climate change will determine the spatial and temporal dynamics of pests and pathogenic species. The phenomenon of climate aridization was expressed also through the impact of the Microsphaera alphitoides disease, intensity of “mildew” attack being based on the climatic conditions of the study region. Obtained data, for confirmation, were correlated with indications of bioindicators, present in the study region.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


Author(s):  
STAVROS DEMERTZIS ◽  
VASILIKI DEMERTZI ◽  
KONSTANTINOS DEMERTZIS

Global climate change has already had observable effects on the environment. Glaciers have shrunk, ice on rivers and lakes is breaking up earlier, plant and animal ranges have shifted and trees are flowering sooner. Under these conditions, air pollution is likely to reach levels that create undesirable living conditions. Anthropogenic activities, such as industry, release large amounts of greenhouse gases into the atmosphere, increasing the atmospheric concentrations of these gases, thus significantly enhancing the greenhouse effect, which has the effect of increasing air heat and thus the speedup of climate change. The use of sophisticated data analysis methods to identify the causes of extreme pollutant values, the correlation of these values with the general climatic conditions and the general malfunctions that can be caused by prolonged air pollution can give a clear picture of current and future climate change. This paper presents a thorough study of preprocessing steps of data analytics and the appropriate big data architectures that are appropriate for the research study of Climate Change and Atmospheric Science.


2014 ◽  
Vol 42 (2) ◽  
pp. 127-138 ◽  
Author(s):  
ERIN C. RIORDAN ◽  
THOMAS W. GILLESPIE ◽  
LINCOLN PITCHER ◽  
STEPHANIE S. PINCETL ◽  
G. DARREL JENERETTE ◽  
...  

SUMMARYClimate and land-use changes are expected to drive high rates of environmental change and biodiversity loss in Mediterranean ecosystems this century. This paper compares the relative future impacts of land use and climate change on two vulnerable tree species native to Southern California (Juglans californica and Quercus engelmannii) using species distribution models. Under the Intergovernmental Panel for Climate Change's A1B future scenario, high levels of both projected land use and climate change could drive considerable habitat losses on these two already heavily-impacted tree species. Under scenarios of no dispersal, projected climate change poses a greater habitat loss threat relative to projected land use for both species. Assuming unlimited dispersal, climate-driven habitat gains could offset some of the losses due to both drivers, especially in J. californica which could experience net habitat gains under combined impacts of both climate change and land use. Quercus engelmannii, in contrast, could experience net habitat losses under combined impacts, even under best-case unlimited dispersal scenarios. Similarly, projected losses and gains in protected habitat are highly sensitive to dispersal scenario, with anywhere from > 60% loss in protected habitat (no dispersal) to > 170% gain in protected habitat (unlimited dispersal). The findings underscore the importance of dispersal in moderating future habitat loss for vulnerable species.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 874
Author(s):  
Jinyue Song ◽  
Hua Zhang ◽  
Ming Li ◽  
Wuhong Han ◽  
Yuxin Yin ◽  
...  

The red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is an invasive pest, and it has spread rapidly all over the world. Predicting the suitable area of S. invicta growth in China will provide a reference that will allow for its invasion to be curbed. In this study, based on the 354 geographical distribution records of S. invicta, combined with 24 environmental factors, the suitable areas of S. invicta growth in China under current (2000s) and future (2030s and 2050s) climate scenarios (SSPs1-2.5s, SSPs2-3.5s and SSPs5-8.5s) were predicted by using the optimized MaxEnt model and geo-detector model. An iterative algorithm and knife-cut test were used to evaluate the important environmental factors that restrict the suitable area under the current climatic conditions. This study also used the response curve to determine the appropriate value of environmental factors to further predict the change and the center of gravity transfer of the suitable area under climate change. The optimized MaxEnt model has high prediction accuracy, and the working curve area (AUC) of the subjects is 0.974. Under climatic conditions, the suitable area is 81.37 × 104 km2 in size and is mainly located in the south and southeast of China. The main environmental factors affecting the suitable area are temperature (Bio1, Bio6, and Bio9), precipitation (Bio12 and Bio14) and NDVI. In future climate change scenarios, the total suitable area will spread to higher latitudes. This distribution will provide an important theoretical basis for relevant departments to rapidly prevent and control the invasion of S. invicta.


2021 ◽  
Vol 70 (1) ◽  
pp. 117-136
Author(s):  
M. R. Ahuja

Abstract Woody plants have been cultured in vitro since the 1930s. After that time much progress has been made in the culture of tissues, organs, cells, and protoplasts in tree species. Tree biotechnology has been making strides in clonal propagation by organogenesis and somatic embryogenesis. These regeneration studies have paved the way for gene transfer in forest trees. Transgenics from a number of forest tree species carrying a variety of recombinant genes that code for herbicide tolerance, pest resistance, lignin modification, increased woody bio-mass, and flowering control have been produced by Agrobacterium-mediated and biolistic methods, and some of them are undergoing confined field trials. Although relatively stable transgenic clones have been produced by genetic transformation in trees using organogenesis or somatic embryogenesis, there were also unintended unstable genetic events. In order to overcome the problems of randomness of transgene integration and instability reported in Agrobacterium-mediated or biolistically transformed plants, site-specific transgene insertion strategies involving clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) platform offer prospects for precise genome editing in plants. Nevertheless, it is important to monitor phenotypic and genetic stability of clonal material, not just under greenhouse conditions, but also under natural field conditions. Genetically modified poplars have been commercialized in China, and eucalypts and loblolly pine are expected to be released for commercial deployment in USA. Clonal forestry and transgenic forestry have to cope with rapid global climate changes in the future. Climate change is impacting species distributions and is a significant threat to biodiversity. Therefore, it is important to deploy Strategies that will assist the survival and evolution of forest tree species facing rapid climate change. Assisted migration (managed relocation) and biotechnological approaches offer prospects for adaptation of forest trees to climate change.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1276
Author(s):  
Anna Walkiewicz ◽  
Adrianna Rafalska ◽  
Piotr Bulak ◽  
Andrzej Bieganowski ◽  
Bruce Osborne

Forests contribute strongly to global carbon (C) sequestration and the exchange of greenhouse gases (GHG) between the soil and the atmosphere. Whilst the microbial activity of forest soils is a major determinant of net GHG exchange, this may be modified by the presence of litter through a range of mechanisms. Litter may act as a physical barrier modifying gas exchange, water movement/retention and temperature/irradiance fluctuations; provide a source of nutrients for microbes; enhance any priming effects, and facilitate macro-aggregate formation. Moreover, any effects are influenced by litter quality and regulated by tree species, climatic conditions (rainfall, temperature), and forest management (clear-cutting, fertilization, extensive deforestation). Based on climate change projections, the importance of the litter layer is likely to increase due to an litter increase and changes in quality. Future studies will therefore have to take into account the effects of litter on soil CO2 and CH4 fluxes for various types of forests globally, including the impact of climate change, insect infestation, and shifts in tree species composition, as well as a better understanding of its role in monoterpene production, which requires the integration of microbiological studies conducted on soils in different climatic zones.


2017 ◽  
pp. 120-127
Author(s):  
S.M. Svyderska

An important element of climate change is to assess changes in agro-climatic growing conditions of crops and the impact of these changes on their performance. Agriculture is the most vulnerable sector of  Ukraine's economy to fluctuations and climate change. Given the inertial nature of agriculture and the dependence of the efficiency on the weather, now need to make timely and adequate solutions to complex problems caused by climate change. Due to the expected increase in air temperature of the Northern Hemisphere food security Ukraine will largely depend on how effectively adapting agriculture to future climate change. This includes advance assessment of the impact of the expected climate change on agro-climatic conditions for growing crops. Potatoes - perennial, herbaceous, plant, but in nature is treated as an annual plant, so that the life cycle, beginning with germination and ending with the formation of bubbles and the formation of mature tubers, is one growing season. Potato is one of the most important crops grown and diversified use in almost all parts of our country. But the main focus areas of potatoes in Polesie and Forest-steppe. We consider the relative performance of the photosynthetic productivity of potato and agro-climatic conditions for growing potatoes for the period 1986 to 2005, and expected their changes calculated by the climate change scenarios A1B and A2 for the period 2011 to 2050 in Eastern and Western Forest-Steppe. We consider the agrometeorological and agro-climatic conditions in which there may be a maximum performance of potato.


Sign in / Sign up

Export Citation Format

Share Document