scholarly journals Genome‐wide discovery of natural variation in pre‐mRNA splicing and prioritising causal alternative splicing to salt stress response in rice

2021 ◽  
Author(s):  
Huihui Yu ◽  
Qian Du ◽  
Malachy Campbell ◽  
Bin Yu ◽  
Harkamal Walia ◽  
...  
Author(s):  
Neeraj Kumar ◽  
Chellapilla Bharadwaj ◽  
Sarika Sahu ◽  
Aalok Shiv ◽  
Abhishek Kumar Shrivastava ◽  
...  

AbstractLncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92–3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt  treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea.


2013 ◽  
Vol 13 (1) ◽  
pp. 180 ◽  
Author(s):  
Quan Zhang ◽  
Chuanzhi Zhao ◽  
Ming Li ◽  
Wei Sun ◽  
Yan Liu ◽  
...  

2021 ◽  
Vol 329 ◽  
pp. 180-191
Author(s):  
Ulkar İbrahimova ◽  
Pragati Kumari ◽  
Saurabh Yadav ◽  
Anshu Rastogi ◽  
Michal Antala ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Peng Xu ◽  
Qi Guo ◽  
Shan Meng ◽  
Xianggui Zhang ◽  
Zhenzhen Xu ◽  
...  

Abstract Background Cotton is more resistant to salt and drought stresses as compared to other field crops, which makes itself as a pioneer industrial crop in saline-alkali lands. However, abiotic stresses still negatively affect its growth and development significantly. It is therefore important to breed salt tolerance varieties which can help accelerate the improvement of cotton production. The development of molecular markers linked to causal genes has provided an effective and efficient approach for improving salt tolerance. Results In this study, a genome-wide association study (GWAS) of salt tolerance related traits at seedling stage was performed based on 2 years of phenotype identification for 217 representative upland cotton cultivars by genotyping-by-sequencing (GBS) platform. A total of 51,060 single nucleotide polymorphisms (SNPs) unevenly distributed among 26 chromosomes were screened across the cotton cultivars, and 25 associations with 27 SNPs scattered over 12 chromosomes were detected significantly (−log10p > 4) associated with three salt tolerance related traits in 2016 and 2017. Among these, the associations on chromosome A13 and D08 for relative plant height (RPH), A07 for relative shoot fresh matter weight (RSFW), A08 and A13 for relative shoot dry matter weight (RSDW) were expressed in both environments, indicating that they were likely to be stable quantitative trait loci (QTLs). A total of 12 salt-induced candidate genes were identified differentially expressed by the combination of GWAS and transcriptome analysis. Three promising genes were selected for preliminary function verification of salt tolerance. The increase of GH_A13G0171-silenced plants in salt related traits under salt stress indicated its negative function in regulating the salt stress response. Conclusions These results provided important genetic variations and candidate genes for accelerating the improvement of salt tolerance in cotton.


2007 ◽  
Vol 283 (3) ◽  
pp. 1229-1233 ◽  
Author(s):  
Claudia Ben-Dov ◽  
Britta Hartmann ◽  
Josefin Lundgren ◽  
Juan Valcárcel

Alternative splicing of mRNA precursors allows the synthesis of multiple mRNAs from a single primary transcript, significantly expanding the information content and regulatory possibilities of higher eukaryotic genomes. High-throughput enabling technologies, particularly large-scale sequencing and splicing-sensitive microarrays, are providing unprecedented opportunities to address key questions in this field. The picture emerging from these pioneering studies is that alternative splicing affects most human genes and a significant fraction of the genes in other multicellular organisms, with the potential to greatly influence the evolution of complex genomes. A combinatorial code of regulatory signals and factors can deploy physiologically coherent programs of alternative splicing that are distinct from those regulated at other steps of gene expression. Pre-mRNA splicing and its regulation play important roles in human pathologies, and genome-wide analyses in this area are paving the way for improved diagnostic tools and for the identification of novel and more specific pharmaceutical targets.


BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 215 ◽  
Author(s):  
Guido Mastrobuoni ◽  
Susann Irgang ◽  
Matthias Pietzke ◽  
Heike E Aßmus ◽  
Markus Wenzel ◽  
...  

2007 ◽  
Vol 27 (22) ◽  
pp. 7771-7780 ◽  
Author(s):  
Paul E. Verslues ◽  
Giorgia Batelli ◽  
Stefania Grillo ◽  
Fernanda Agius ◽  
Yong-Sig Kim ◽  
...  

ABSTRACT SOS2, a class 3 sucrose-nonfermenting 1-related kinase, has emerged as an important mediator of salt stress response and stress signaling through its interactions with proteins involved in membrane transport and in regulation of stress responses. We have identified additional SOS2-interacting proteins that suggest a connection between SOS2 and reactive oxygen signaling. SOS2 was found to interact with the H2O2 signaling protein nucleoside diphosphate kinase 2 (NDPK2) and to inhibit its autophosphorylation activity. A sos2-2 ndpk2 double mutant was more salt sensitive than a sos2-2 single mutant, suggesting that NDPK2 and H2O2 are involved in salt resistance. However, the double mutant did not hyperaccumulate H2O2 in response to salt stress, suggesting that it is altered signaling rather than H2O2 toxicity alone that is responsible for the increased salt sensitivity of the sos2-2 ndpk2 double mutant. SOS2 was also found to interact with catalase 2 (CAT2) and CAT3, further connecting SOS2 to H2O2 metabolism and signaling. The interaction of SOS2 with both NDPK2 and CATs reveals a point of cross talk between salt stress response and other signaling factors including H2O2.


Sign in / Sign up

Export Citation Format

Share Document