Seasonal thaw and landscape position determine foliar functional traits and whole‐plant water use in tall shrubs on the low arctic tundra

2021 ◽  
Author(s):  
Katherine L. Black ◽  
Cory A. Wallace ◽  
Jennifer L. Baltzer
2015 ◽  
Vol 3 (3) ◽  
pp. 220-228 ◽  
Author(s):  
Hipólito Medrano ◽  
Magdalena Tomás ◽  
Sebastià Martorell ◽  
Jaume Flexas ◽  
Esther Hernández ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alejandro del Pozo ◽  
Ana María Méndez-Espinoza ◽  
Sebastián Romero-Bravo ◽  
Miguel Garriga ◽  
Félix Estrada ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 542d-542
Author(s):  
Kirk W. Pomper ◽  
Michael A. Grusak

Understanding the mechanisms that regulate xylem transport of calcium (Ca) to green bean pods could allow approaches to increase pod Ca concentrations and enhance the nutritional value of edible pods. Using the green bean cultivars `Hystyle' and `Labrador', that exhibit high and low pod Ca levels respectively, we wished to determine whether observed differences in Ca concentration of stem xylem-sap were related to differences in whole-plant water uptake and Ca import. Well-watered greenhouse-grown plants, selected at flowering and at two stages of pod development, were placed in a growth chamber at a constant light intensity. Pot weight loss was measured to determine whole-plant water use and stem xylem exudate was subsequently collected from the severed base of the shoot. `Hystyle' displayed 50% higher Ca concentration in exudate than `Labrador' during pod development. Labrador showed 35% greater total water transport through the stem than `Hystyle'. Additional plants were used to determine total, long-term Ca uptake. No significant differences in total Ca were seen between cultivars at the three harvest dates. With whole-plant Ca uptake being equivalent, the results suggest that higher water uptake in `Labrador' led to a dilution of Ca in the xylem stream and thus less total Ca was transported to developing pods, relative to that in `Hystyle'. These results reveal that green bean varieties with low whole-plant water use have the potential to yield edible pods with elevated Ca content.


2014 ◽  
Vol 179 ◽  
pp. 103-111 ◽  
Author(s):  
Stefano Poni ◽  
Marco Galbignani ◽  
Eugenio Magnanini ◽  
Fabio Bernizzoni ◽  
Alberto Vercesi ◽  
...  

2006 ◽  
Vol 173 (2) ◽  
pp. 294-305 ◽  
Author(s):  
Lucas A. Cernusak ◽  
Jorge Aranda ◽  
John D. Marshall ◽  
Klaus Winter

2020 ◽  
Author(s):  
Ron Sunny ◽  
Anirban Guha ◽  
Asmi Jezeera ◽  
Kavya Mohan N ◽  
Neha Mohan Babu ◽  
...  

ABSTRACTHow co-occurring species vary in the utilization of a shared and limited supply of water, especially in the context of other limiting resources like light, is essential for understanding processes that facilitate species coexistence and community assembly. For seedlings in a seasonally dry tropical forest that experience large heterogeny in light and water conditions, how water use, leaf physiology, and subsequently plant growth, is affected by limited water and light availability is still not well understood. In a controlled common garden experiment with four co-existing and commonly occurring dry tropical forest species, we examined how whole plant water uptake, responds to limiting water and light conditions and whether these responses are reflected in leaf physiology, and translated to growth. Water use varied dramatically in seedlings of the four species with a five-fold difference in well-watered plants grown in full sunlight. Species varied in their response to shade, but did not differ in responses to the low water treatment, possibly resulting from the strong selective force imposed by the very low water availability and the long dry period characteristic of these seasonally dry forests. Interestingly, species responses in water use, physiology, and growth in limiting water conditions were independent of light. Thus, species response to both these limiting conditions may evolve independently of each other. Responses in water use were largely congruent with responses in leaf physiology and growth. However, while magnitude of changes in leaf physiology were largely driven by light conditions, changes in whole plant water use and growth were influenced to a greater degree by the water treatment. This highlights the need to measure whole plant water use to better understand plant growth responses in these seasonally dry tropical forests.


2018 ◽  
Author(s):  
Patrick Z. Ellsworth ◽  
Max J. Feldman ◽  
Ivan Baxter ◽  
Asaph B. Cousins

AbstractIncreasing whole plant water use efficiency (yield per transpiration; WUEplant) through plant breeding can benefit the sustainability of agriculture and improve crop yield under drought. To select for WUEplant, an efficient phenotyping method that reports on the genetic contribution of component traits such as transpiration efficiency (TEi; rate of CO2 assimilation per stomatal conductance) must be developed. Leaf carbon stable isotope composition (δ13Cleaf) has been proposed as a high-throughput proxy for TEi, and a negative correlation between δ13Cleaf and both WUEplant and TEi has previously been demonstrated in several C4 grass species. Therefore, the aim of the research presented here was to determine if the same loci control δ13Cleaf, WUEplant, and TEi under well-watered and water-limited conditions in a recombinant inbred line (RIL) population of closely related C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13Cleaf were co-localized with transpiration, biomass, and a linear model of WUE. When WUEplant was calculated for allele classes based on the three QTL for δ13Cleaf, δ13Cleaf was negatively correlated with WUEplant as theory predicts when WUEplant is in part driven by differences in TEi. In any population, multiple traits can influence WUEplant; however, the analysis of δ13Cleaf in this RIL population demonstrates that there is genetic control of TEi that significantly contributes to WUEplant. Furthermore, this research suggests that δ13Cleaf can be used in marker-assisted breeding to select for TEi and as a tool to better understand the physiology and genetic architecture of TEi and WUEplant in C4 species.Significance StatementOverextended water resources and drought are major agricultural problems worldwide. Therefore, selection for increased plant water use efficiency (WUEplant) in food and biofuel crop species is an important trait in plant breeding programs. Leaf carbon isotopic composition (δ13Cleaf) has potential as a rapid and effective high throughput phenotyping method for intrinsic transpiration efficiency (TEi), an important leaf-level component trait of WUEplant. Our research shows that δ13Cleaf and WUEplant share a common genetic architecture through their shared relationship with TEi. This suggests that δ13Cleaf can be used as a screen for TEi in marker-assisted plant breeding programs to improve crop drought resistance and decrease agricultural water consumption.


Sign in / Sign up

Export Citation Format

Share Document