scholarly journals Assessment of mustard vesicant lung injury and anti‐TNF‐ α efficacy in rodents using live‐animal imaging

2020 ◽  
Vol 1480 (1) ◽  
pp. 246-256
Author(s):  
Alexa Murray ◽  
Andrew J. Gow ◽  
Alessandro Venosa ◽  
Jaclynn Andres ◽  
Rama Malaviya ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Melissa E. Monterosso ◽  
Kathryn Futrega ◽  
William B. Lott ◽  
Ian Vela ◽  
Elizabeth D. Williams ◽  
...  

AbstractProstate cancer (PCa) patient-derived xenografts (PDXs) are commonly propagated by serial transplantation of “pieces” of tumour in mice, but the cellular composition of pieces is not standardised. Herein, we optimised a microwell platform, the Microwell-mesh, to aggregate precise numbers of cells into arrays of microtissues, and then implanted the Microwell-mesh into NOD-scid IL2γ−/− (NSG) mice to study microtissue growth. First, mesh pore size was optimised using microtissues assembled from bone marrow-derived stromal cells, with mesh opening dimensions of 100×100 μm achieving superior microtissue vascularisation relative to mesh with 36×36 μm mesh openings. The optimised Microwell-mesh was used to assemble and implant PCa cell microtissue arrays (hereafter microtissues formed from cancer cells are referred to as microtumours) into mice. PCa cells were enriched from three different PDX lines, LuCaP35, LuCaP141, and BM18. 3D microtumours showed greater in vitro viability than 2D cultures, but neither proliferated. Microtumours were successfully established in mice 81% (57 of 70), 67% (4 of 6), 76% (19 of 25) for LuCaP35, LuCaP141, and BM18 PCa cells, respectively. Microtumour growth was tracked using live animal imaging for size or bioluminescence signal. If augmented with further imaging advances and cell bar coding, this microtumour model could enable greater resolution of PCa PDX drug response, and lead to the more efficient use of animals. The concept of microtissue assembly in the Microwell-mesh, and implantation in vivo may also have utility in implantation of islets, hair follicles or other organ-specific cells that self-assemble into 3D structures, providing an important bridge between in vitro assembly of mini-organs and in vivo implantation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2580-2580
Author(s):  
Xin Li ◽  
Wen Ling ◽  
Sharmin Khan ◽  
Yuping Wang ◽  
Angela Pennisi ◽  
...  

Abstract Abstract 2580 Intravenously administered mesenchymal stem cells (MSCs) are trapped in pulmonary vascular bed and only few MSCs home to bone or other tissues in physiological or pathological conditions. Following intracardiac injection MSCs pass the lung barrier but their homing to bone and tissue localization is uncertain. The aim of the study was to investigate trafficking and exact localization of human MSCs following intracardiac injection into unchallenged mice and a xenograft bone tumor model. MSCs were isolated from human fetal bones (ABR Inc, Alameda CA) and expanded in DMEM-LG medium supplemented with 10% FBS. Global gene expression profiling revealed that the cultured MSCs were devoid of hematopoietic cells and expressed typical mesenchymal markers such as CD166, CD146 and CD90. We have previously shown that these MSCs are capable of differentiation into osteoblasts and adipocytes and retain their differentiation potential after multiple passages (Haematologica 2006). The MSCs were transduced with a luciferase/GFP reporter in a lentiviral vector and were maximally passaged 8 times before used in vivo. Detection of MSCs in mice was determined by live-animal imaging and ex vivo bioluminescence activity using the IVIS system, by microscopic examination of GFP-expressing cells and by immunohistochemistry for GFP. MSCs (1×106 cells/mouse) were intracardiacly injected into unconditioned SCID mice (n=8) using Dovetail Slide Micromanipulator that ensures accurate injection. Following 2 or 7 days after MSC injection to SCID mice, live-animal imaging revealed bioluminescence activity mainly in the mice abdomen but not bone, while ex vivo examination detected MSCs in various abdominal organs, primarily in reproductive organs, intestine and pancreas. Careful microscopic examination revealed localization of MSCs in draining lymph nodes attached to these organs by connective tissue. Immunohistochemistry showed GFP-expressing MSCs in the adjacent mesenteric lymph nodes but not within the organs. To confirm our findings, MSCs were intracardially injected into C57BL6 mice (n=6) that harbor functional lymph nodes. Evans blue dye which is known to accumulate in and identify lymph nodes, was injected into the rear footpad or lateral tail base of the mice, 3 hours after MSC injection and 30 minutes prior to bioluminescence and florescence analyses. The Evans blue dye and GFP positivity were co-localized, indicating specific trafficking of MSCs to lymph nodes. Culturing of the dissected lymph nodes resulted in release of GFP-expressing MSCs which regained their in vitro morphology. For testing MSCs trafficking in a xenograft model, we used our SCID-rab system constructed by implanting a 4-weeks old rabbit bone into which human myeloma cells were directly injected (Leukemia 2004; Blood 2007). In this model myeloma cells grow restrictively in the implanted bone. MSCs injected intracardiacly into SCID-rab mice were mostly found in mesenteric lymph nodes but were also detected in the myelomatous bone 72 hours after MSCs injection, validating the ability of tumor cells to attract MSCs and that these MSCs are capable of transmigration. We conclude that MSCs primarily traffic to draining lymph nodes, partially explaining their in vivo immunomodulatory activity, and that understanding the mechanism by which MSCs traffic to lymph nodes may help develop approaches to shift their homing to desired organs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 646-646
Author(s):  
Xin Li ◽  
Wen Ling ◽  
Angela Pennisi ◽  
Jianmei Chen ◽  
Sharmin Khan ◽  
...  

Abstract Induction of osteolytic bone disease in multiple myeloma (MM) is caused by activation of osteoclastogenesis and suppression of osteoblastogenesis. Bone formation is reduced mainly through production of inhibitors of osteoblast differentiation by MM cells and by impaired osteogenic differentiation of endogenous mesenchymal stem cells (MSCs). Recently, human placenta has emerged as a potentially valuable source of progenitor cells for multiple therapeutic purposes, including bone repair and cancer (Parolini et al., Stem Cells26:300–311, 2008). The aim of the study was to investigate the effects of human placenta-derived adherent cells (PDAC™) on MM bone disease and tumor growth in the SCID-rab mouse model for MM. PDAC™ are mesenchymal like adherent cells isolated from postpartum human placenta and capable of supporting bone formation in vivo. Bone disease was evaluated by measurements of bone mineral density (BMD) and visualized by X-rays. MM growth was determined by human immunoglobulin (hIg) ELISA and live animal imaging. For in vivo tracking PDAC™ or our stroma-dependent BN MM cell line was transduced with a luciferase/GFP reporter in a lentiviral vector. In the first in vivo experiment, 10 SCID-rab mice were engrafted with a patient’s MM cells. Following establishment of MM and detection of bone disease, luciferase-expressing PDAC™ (1×106 cells/bone) or phosphate-buffered saline (PBS) were injected directly into implanted myelomatous bones in SCID-rab mice (5 mice/group). At experiment’s end (5 wk after cytotherapy) PDAC™ could be detected in mice by live animal imaging. Whereas in control mice, BMD of the implanted bone was reduced from pretreatment levels by 8±4%, administration of PDAC™ resulted in increased BMD of the implanted bone in all mice by 132±20% from pretreatment levels (p<0.0006). Levels of hIg in mice sera (tumor burden) at experiment’s end were 202±56 μg/ml and 12±4 μg/ml in PBS- and PDAC™ -treated hosts, respectively (p<0.007). In the second in vivo experiment hosts engrafted with our luciferase-expressing BN MM line (Li et al., BJH 2007) were similarly injected with PDAC™ or PBS (8 mice/group). Six wk following treatment the BMD of the implanted bone in the control PBS group was reduced by 31±33% (p<0.0009) from pretreatment levels while in PDAC™ –treated group it was slightly reduced by 2±6% from pretreatment levels. Treatment with PDAC™ had no effect on in vivo growth of the BN MM cell line, indicating that prevention of bone disease by PDAC™ was not a consequence of reduced MM. In contrast to fetal MSCs, PDAC™ expressed high levels of OPG (>30 fold) and low levels of RANKL (<5 fold) as determined by qRT-PCR. Differentiation of osteoclast precursors in media supplemented with RANKL and M-CSF was reduced in the presence of PDAC™ or their conditioned media by 60±6% (p<0.004), an effect that was partially blocked by OPG neutralizing antibody (p<0.04). PDAC™ also induced apoptosis of osteoclast precursors as determined by annexin V/PI staining. We conclude that PDAC™ prevent bone loss and promote bone formation in myelomatous bone through simultaneous inhibition of osteoclastogenesis and stimulation of osteoblastogenesis, and that engraftment of PDAC™ inhibits growth of primary MM in vivo.


2018 ◽  
Vol 6 (20) ◽  
pp. 3366-3371 ◽  
Author(s):  
Vikram Singh ◽  
Kundan S. Rawat ◽  
Shachi Mishra ◽  
Tanvi Baghel ◽  
Soobiya Fatima ◽  
...  

Luminescent carbon quantum dots (CQDs) prepared from aqueous beetroot extract were developed as unique fluorescent nanomaterials for in vivo live animal imaging applications.


2013 ◽  
Author(s):  
Yong Zhang ◽  
Suni Tang ◽  
Jinhui Zhang ◽  
Cheng Jiang ◽  
Junxuan Lu

Sign in / Sign up

Export Citation Format

Share Document