scholarly journals Coordination between water transport capacity, biomass growth, metabolic scaling and species stature in co‐occurring shrub and tree species

2014 ◽  
Vol 37 (12) ◽  
pp. 2679-2690 ◽  
Author(s):  
DUNCAN D. SMITH ◽  
JOHN S. SPERRY
Author(s):  
Mark E. De Guzman ◽  
Louis S. Santiago ◽  
Stefan A. Schnitzer ◽  
Leonor Álvarez-Cansino

Nanoscale ◽  
2021 ◽  
Author(s):  
Jing Wu ◽  
Baona Ren ◽  
Haohong Pi ◽  
Xin Zhao ◽  
Miaomiao Hu ◽  
...  

Fresh water scarcity becomes a crisis to human survival and development. Atmospheric water capture with remarkable advantages such as energy-independence, low-cost, etc., has been supposed as a promising way to...


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 513
Author(s):  
Luping Qu ◽  
Hans J. De Boeck ◽  
Huihua Fan ◽  
Gang Dong ◽  
Jiquan Chen ◽  
...  

The frequency and intensity of heat waves (HWs) has increased in subtropical regions in recent years. The mechanism underlying the HW response of subtropical trees remains unclear. In this study, we conducted an experiment with broad-leaved Schima superba (S. superba) and coniferous Cunninghamia lanceolata (C. lanceolata) seedlings to examine HW (5-day long) effects on stem water transport, leaf water use efficiency (WUE), morphology and growth, and to elucidate differences in the responses of both species. Our results indicated that HWs can significantly reduce hydraulic conductivity in both species. C. lanceolata experienced significant xylem embolism, with the percentage loss of conductivity (PLC) increasing by 40%, while S. superba showed a non-significant increase in PLC (+25%). Furthermore, HW also caused a reduction in photosynthesis rates (An), but transpiration rates (Tr) increased on the 5th day of the HW, together leading to a significant decrease in leaf WUE. From diurnal dynamics, we observed that the HW caused significant decrease of S. superba An only in the morning, but nearly the all day for C. lanceolata. During the morning, with a high vapor pressure deficit (VPD) environment, the HW increased Tr, which contributed a lot to latently cooling the foliage. In comparing the two tree species, we found that HW effects on S. superba were mostly short-term, with leaf senescence but limited or no xylem embolism. The surviving S. superba recovered rapidly, forming new branches and leaves, aided by their extensive root systems. For C. lanceolata, continued seedling growth initially but with subsequent xylem embolism and withering of shoots, led to stunted recovery and regrowth. In conclusion, apart from the direct thermal impacts caused by HW, drought stress was the main cause of significant negative effects on plant water transport and the photosynthetic system. Furthermore, S. superba and C. lanceolata showed clearly different responses to HW, which implies that the response mechanisms of broad-leaved and coniferous tree species to climate change can differ.


1984 ◽  
Vol 247 (5) ◽  
pp. F816-F821 ◽  
Author(s):  
F. Y. Liu ◽  
M. G. Cogan

To measure simultaneously the concentration profiles of bicarbonate, chloride and inulin along the length of the superficial proximal convoluted tubule, free-flow micropuncture measurements were made sequentially from the end-proximal tubule to Bowman's space in 10 tubules of hydropenic Munich-Wistar rats. Bicarbonate and volume reabsorption were 354 +/- 21 pmol X mm-1 X min-1 and 5.9 +/- 0.4 nl X mm-1 X min-1 in the first millimeter and fell progressively in the remaining 3.8 mm of tubule, averaging 83 +/- 4 pmol X mm-1 X min-1 and 2.3 +/- 0.5 nl X mm-1 X min-1, respectively. The values in the initial millimeter represents a high transport capacity since they exceed rates that have been observed when comparable or even higher mean luminal substrate concentrations were presented to the late proximal tubule. In contrast, chloride reabsorption was only 206 +/- 55 peq X mm-1 X min-1 in the first millimeter compared with a mean of 306 +/- 22 peq X mm-1 X min-1 in the rest of the tubule. In conclusion, there is substantial axial transport heterogeneity, with bicarbonate and water reabsorption higher but chloride reabsorption lower in the early compared with the late superficial proximal convoluted tubule.


2019 ◽  
Vol 124 (6) ◽  
pp. 979-991 ◽  
Author(s):  
Emile Caroline Silva Lopes ◽  
Weverton Pereira Rodrigues ◽  
Katherine Ruas Fraga ◽  
José Altino Machado Filho ◽  
Jefferson Rangel da Silva ◽  
...  

AbstractBackground and AimsAlthough hypernodulating phenotype mutants of legumes, such as soybean, possess a high leaf N content, the large number of root nodules decreases carbohydrate availability for plant growth and seed yield. In addition, under conditions of high air vapour pressure deficit (VPD), hypernodulating plants show a limited capacity to replace water losses through transpiration, resulting in stomatal closure, and therefore decreased net photosynthetic rates. Here, we used hypernodulating (nod4) (282.33 ± 28.56 nodules per plant) and non-nodulating (nod139) (0 nodules per plant) soybean mutant lines to determine explicitly whether a large number of nodules reduces root hydraulic capacity, resulting in decreased stomatal conductance and net photosynthetic rates under high air VPD conditions.MethodsPlants were either inoculated or not inoculated with Bradyrhizobium diazoefficiens (strain BR 85, SEMIA 5080) to induce nitrogen-fixing root nodules (where possible). Absolute root conductance and root conductivity, plant growth, leaf water potential, gas exchange, chlorophyll a fluorescence, leaf ‘greenness’ [Soil Plant Analysis Development (SPAD) reading] and nitrogen content were measured 37 days after sowing.Key ResultsBesides the reduced growth of hypernodulating soybean mutant nod4, such plants showed decreased root capacity to supply leaf water demand as a consequence of their reduced root dry mass and root volume, which resulted in limited absolute root conductance and root conductivity normalized by leaf area. Thereby, reduced leaf water potential at 1300 h was observed, which contributed to depression of photosynthesis at midday associated with both stomatal and non-stomatal limitations.ConclusionsHypernodulated plants were more vulnerable to VPD increases due to their limited root-to-shoot water transport capacity. However, greater CO2 uptake caused by the high N content can be partly compensated by the stomatal limitation imposed by increased VPD conditions.


2020 ◽  
Vol 295 ◽  
pp. 108173
Author(s):  
Eugenia Galat Giorgi ◽  
Markus Keller ◽  
Víctor Sadras ◽  
Fidel Alejandro Roig ◽  
Jorge Perez Peña

2014 ◽  
Vol 39 (8) ◽  
pp. 984-991 ◽  
Author(s):  
Sebastián R. Zeballos ◽  
Melisa A. Giorgis ◽  
Ana M. Cingolani ◽  
Marcelo Cabido ◽  
Juan I. Whitworth-Hulse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document