Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulations in expression and heterocomplex prevails under the high-temperature stress conditionin vitro

2014 ◽  
Vol 38 (4) ◽  
pp. 767-776 ◽  
Author(s):  
SOO MIN PARK ◽  
KEUN PILL KIM ◽  
MYUNG KUK JOE ◽  
MI OK LEE ◽  
HYUN JO KOO ◽  
...  
2020 ◽  
Author(s):  
Sanchari Bhattacharjee ◽  
Mohana Saha ◽  
Rakhi Dasgupta ◽  
Angshuman Bagchi

AbstractCells can withstand the effects of temperature stress by activating small heat shock proteins IbpA and IbpB. Lon protease employing Ser679 – Lys722 catalytic dyad proteolyze IbpA and IbpB in their free forms, at physiological temperature i.e. without any temperature stress. However, the proteolytic activity of IbpA and IbpB is affected when the catalytic dyad residue of Lon protease is mutated. The mutation S679A in Lon protease brings about some changes so that the proteolytic interactions between the small heat shock proteins with that of the mutant Lon protease are lost which makes a difference in the interaction pattern of mutant Lon protease with their substrates. In the present study, we made an attempt through in-silico approach to figure out the underlying aspects of the interactions between the small heat shock proteins IbpA and IbpB with mutant Lon protease in Escherichia coli. We have tried to decipher the molecular details of the mechanism of interaction of proteolytic machinery of small heat shock proteins and mutant Lon protease with S679A mutation at physiological temperature in absence cellular temperature stress. Our study may therefore be helpful to decode the mechanistic details of the correlation with IbpA, IbpB and S679A mutant Lon protease in E. coli.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Wenjuan Xun ◽  
Liguang Shi ◽  
Ting Cao ◽  
Chunping Zhao ◽  
Ping Yu ◽  
...  

Small heat shock proteins 9 and 10 (HSPB9 and HSPB10) are two testis-specific expressed sHsps. The objective of this study was to investigate the mRNA expression profile of HSPB9 and HSPB10 in goat testis among the different seasons, ages, and environmental temperatures. Allocation of the two sHsps was also performed by immunohistochemistry. The results showed that the transcript levels of HSPB9 and HSPB10 were extremely high in the testis(P<0.01). The relative expression of HSBP9 and HSPB10 in testis showed a tendency to increase with age and then is maintained at the constant level after sexual maturity. HSPB9 and HSPB10 have significantly higher expression in the breeding season  (P<0.05)and hot season(P<0.01). Both HSPB9 and HSPB10 were found to be upregulated by high-temperature stress in testis(P<0.05), and the expressions of Hsp70 and Hsp90 were also increased simultaneously(P<0.01). Immunohistochemistry analysis localized HSPB9 expressed in spermatogonia, spermatocytes, and round spermatids and HSPB10 expressed in the elongate spermatids. In epididymis, strongly staining signal of HSPB10 was detected in pseudostratified columnar epithelium. In conclusion, the two testis-specific sHsps are closely related to male reproduction and heat tolerance. The results could provide valuable data for the further studies on HSPB9 and HSPB10.


Planta ◽  
2019 ◽  
Vol 251 (1) ◽  
Author(s):  
Neelam K. Sarkar ◽  
Sachin Kotak ◽  
Manu Agarwal ◽  
Yeon-Ki Kim ◽  
Anil Grover

2016 ◽  
pp. pp.00536.2016 ◽  
Author(s):  
Fionn McLoughlin ◽  
Eman Basha ◽  
Mary Elizabeth Fowler ◽  
Minsoo Kim ◽  
Juliana Bordowitz ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6992 ◽  
Author(s):  
Jing Bai ◽  
Xiao-Na Liu ◽  
Ming-Xing Lu ◽  
Yu-Zhou Du

Small heat shock proteins (sHSPs) are probably the most diverse in structure and function among the various super-families of stress proteins, and they play essential roles in various biological processes. The sweet potato whitefly, Bemisia tabaci (Gennadius), feeds in the phloem, transmits several plant viruses, and is an important pest on cotton, vegetables and ornamentals. In this research, we isolated and characterized three α-crystallin/sHSP family genes (Bthsp19.5, Bthsp19.2, and Bthsp21.3) from Bemisia tabaci. The three cDNAs encoded proteins of 171, 169, and 189 amino acids with calculated molecular weights of 19.5, 19.2, and 21.3 kDa and isoelectric points of 6.1, 6.2, and 6.0, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in Hemiptera and Thysanoptera insects species. All three sHSPs genes from Bemisia tabaci lacked introns. Quantitative real-time PCR analyses revealed that the three BtsHSPs genes were significantly up-regulated in Bemisia tabaci adults and pupae during high temperature stress (39, 41, 43, and 45 °C) but not in response to cold temperature stress (−6, −8, −10, and −12 °C). The expression levels of Bthsp19.2 and Bthsp21.3 in pupae was higher than adults in response to heat stress, while the expression level of Bthsp19.5 in adults was higher than pupae. In conclusion, this research results show that the sHSP genes of Bemisia tabaci had shown differential expression changes under thermal stress.


Sign in / Sign up

Export Citation Format

Share Document