Rapid induction of small heat shock proteins improves physiological adaptation to high temperature stress in peanut

2018 ◽  
Vol 204 (3) ◽  
pp. 285-297 ◽  
Author(s):  
K. Chakraborty ◽  
S. K. Bishi ◽  
A. L. Singh ◽  
P. V. Zala ◽  
M. K. Mahatma ◽  
...  
2020 ◽  
Author(s):  
Sanchari Bhattacharjee ◽  
Mohana Saha ◽  
Rakhi Dasgupta ◽  
Angshuman Bagchi

AbstractCells can withstand the effects of temperature stress by activating small heat shock proteins IbpA and IbpB. Lon protease employing Ser679 – Lys722 catalytic dyad proteolyze IbpA and IbpB in their free forms, at physiological temperature i.e. without any temperature stress. However, the proteolytic activity of IbpA and IbpB is affected when the catalytic dyad residue of Lon protease is mutated. The mutation S679A in Lon protease brings about some changes so that the proteolytic interactions between the small heat shock proteins with that of the mutant Lon protease are lost which makes a difference in the interaction pattern of mutant Lon protease with their substrates. In the present study, we made an attempt through in-silico approach to figure out the underlying aspects of the interactions between the small heat shock proteins IbpA and IbpB with mutant Lon protease in Escherichia coli. We have tried to decipher the molecular details of the mechanism of interaction of proteolytic machinery of small heat shock proteins and mutant Lon protease with S679A mutation at physiological temperature in absence cellular temperature stress. Our study may therefore be helpful to decode the mechanistic details of the correlation with IbpA, IbpB and S679A mutant Lon protease in E. coli.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Wenjuan Xun ◽  
Liguang Shi ◽  
Ting Cao ◽  
Chunping Zhao ◽  
Ping Yu ◽  
...  

Small heat shock proteins 9 and 10 (HSPB9 and HSPB10) are two testis-specific expressed sHsps. The objective of this study was to investigate the mRNA expression profile of HSPB9 and HSPB10 in goat testis among the different seasons, ages, and environmental temperatures. Allocation of the two sHsps was also performed by immunohistochemistry. The results showed that the transcript levels of HSPB9 and HSPB10 were extremely high in the testis(P<0.01). The relative expression of HSBP9 and HSPB10 in testis showed a tendency to increase with age and then is maintained at the constant level after sexual maturity. HSPB9 and HSPB10 have significantly higher expression in the breeding season  (P<0.05)and hot season(P<0.01). Both HSPB9 and HSPB10 were found to be upregulated by high-temperature stress in testis(P<0.05), and the expressions of Hsp70 and Hsp90 were also increased simultaneously(P<0.01). Immunohistochemistry analysis localized HSPB9 expressed in spermatogonia, spermatocytes, and round spermatids and HSPB10 expressed in the elongate spermatids. In epididymis, strongly staining signal of HSPB10 was detected in pseudostratified columnar epithelium. In conclusion, the two testis-specific sHsps are closely related to male reproduction and heat tolerance. The results could provide valuable data for the further studies on HSPB9 and HSPB10.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6992 ◽  
Author(s):  
Jing Bai ◽  
Xiao-Na Liu ◽  
Ming-Xing Lu ◽  
Yu-Zhou Du

Small heat shock proteins (sHSPs) are probably the most diverse in structure and function among the various super-families of stress proteins, and they play essential roles in various biological processes. The sweet potato whitefly, Bemisia tabaci (Gennadius), feeds in the phloem, transmits several plant viruses, and is an important pest on cotton, vegetables and ornamentals. In this research, we isolated and characterized three α-crystallin/sHSP family genes (Bthsp19.5, Bthsp19.2, and Bthsp21.3) from Bemisia tabaci. The three cDNAs encoded proteins of 171, 169, and 189 amino acids with calculated molecular weights of 19.5, 19.2, and 21.3 kDa and isoelectric points of 6.1, 6.2, and 6.0, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in Hemiptera and Thysanoptera insects species. All three sHSPs genes from Bemisia tabaci lacked introns. Quantitative real-time PCR analyses revealed that the three BtsHSPs genes were significantly up-regulated in Bemisia tabaci adults and pupae during high temperature stress (39, 41, 43, and 45 °C) but not in response to cold temperature stress (−6, −8, −10, and −12 °C). The expression levels of Bthsp19.2 and Bthsp21.3 in pupae was higher than adults in response to heat stress, while the expression level of Bthsp19.5 in adults was higher than pupae. In conclusion, this research results show that the sHSP genes of Bemisia tabaci had shown differential expression changes under thermal stress.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1115B-1115
Author(s):  
Seenivasan Natarajan ◽  
Jeff Kuehny

Small heat shock proteins (sHSP) are a specific group of highly conserved proteins produced in almost all living organisms under heat stress. These sHSP have been shown to help prevent damage at the biomolecular level in plants. One of the greatest impediments to production of marketable herbaceous plants and their longevity is high temperature stress. The objectives of this experiment were to study the plant responses in terms of sHSP synthesis, single leaf net photosynthesis, total water-soluble carbohydrates (WSC), and overall growth for two S. splendens cultivars differing in performance under heat stress. `Vista Red' (heat tolerant) and `Sizzler Red' (heat sensitive) were exposed to short duration (3 hours) high temperature stresses of 30, 35, and 40 °C in growth chambers. Increasing the temperature to about 10 to 15 °C above the optimal growth temperature (25 °C, control) induced the synthesis of sHSP 27 in S. splendens. Expression of these proteins was significantly greater in the heat-tolerant vs. the heat-sensitive cultivar. Soluble carbohydrate content was greater in `Vista Red', and in both the cultivars raffinose was the primary soluble carbohydrate in heat-stressed plants. Overall growth of plants was significantly different in the two cultivars studied in terms of plant height, stem thickness, number of days to flower, and marketable quality. The better performance of `Vista Red' under heat stress was attributed to its morphological characteristics, including short stature, thicker stems and leaves. sHSPs and WSC are also found to be associated with heat tolerance and heat adaptation in S. splendens.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 291
Author(s):  
Akhilesh Kumar Kushawaha ◽  
Ambreen Khan ◽  
Sudhir Kumar Sopory ◽  
Neeti Sanan-Mishra

Rice plants often encounter high temperature stress, but the associated coping strategies are poorly understood. It is known that a prior shorter exposure to high temperature, called thermo-priming, generally results in better adaptation of the plants to subsequent exposure to high temperature stress. High throughput sequencing of transcript and small RNA libraries of rice seedlings primed with short exposure to high temperature followed by high temperature stress and from plants exposed to high temperature without priming was performed. This identified a number of transcripts and microRNAs (miRs) that are induced or down regulated. Among them osa-miR531b, osa-miR5149, osa-miR168a-5p, osa-miR1846d-5p, osa-miR5077, osa-miR156b-3p, osa-miR167e-3p and their respective targets, coding for heat shock activators and repressors, showed differential expression between primed and non-primed plants. These findings were further validated by qRT-PCR. The results indicate that the miR-regulated heat shock proteins (HSPs)/heat shock transcription factors (HSFs) may serve as important regulatory nodes which are induced during thermo-priming for plant survival and development under high temperatures.


Sign in / Sign up

Export Citation Format

Share Document