Exogenous 6‐benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis

Plant Biology ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 1150-1159
Author(s):  
J. Mao ◽  
C. Niu ◽  
K. Li ◽  
M. Mobeen Tahir ◽  
A. Khan ◽  
...  
2021 ◽  
Vol 289 ◽  
pp. 110419
Author(s):  
Jiangping Mao ◽  
Chundong Niu ◽  
Shiyue Chen ◽  
Yichao Xu ◽  
Abid Khan ◽  
...  

2017 ◽  
Vol 82 (3) ◽  
pp. 391-401 ◽  
Author(s):  
Jiangping Mao ◽  
Dong Zhang ◽  
Ke Li ◽  
Zhen Liu ◽  
Xiaojie Liu ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Aliki Xanthopoulou ◽  
Javier Montero-Pau ◽  
Belén Picó ◽  
Panagiotis Boumpas ◽  
Eleni Tsaliki ◽  
...  

Abstract Background Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. Results In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. Conclusions These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.


2003 ◽  
Vol 12 (3-4) ◽  
pp. 155-164 ◽  
Author(s):  
A. SIMOJOKI ◽  
T. XUE ◽  
K. LUKKARI

Allocation of selenium (Se) in lettuce and its impact on root morphology were studied to better understand the growth responses of plants to added Se. Lettuce was grown in vermiculite under controlled growing conditions for seven weeks, and the allocation in the shoots and roots of selenate added in increasing dosages (0, 1, 10, 100, 500 and 1000 µg Se per 3.5-litre pot) as well as morphological variables of the roots were determined. The intermediate additions of 100 and 500 µg Se per pot seemed to produce the highest biomasses, although this was nearly masked by large scatter in the data. The Se contents both in roots and shoots increased roughly proportionally to the amount of Se added. However, at small additions Se was preferentially allocated to roots, whereas at larger additions the contents in roots and shoots (mg kg-1 dry matter) were roughly equal. Se treatments did not change the morphology of hypocotyls. On the contrary, the specific length and area of basal and lateral roots were smallest at intermediate Se additions, whereas the specific volume was largest at the largest Se addition. These effects of Se on root morphology were, however, not unambiguously related to plant growth. As the Se contents in roots increased, the roots grew thicker and the specific volume of lateral roots increased in agreement with a hypothesis of increased endogenous ethylene production.;


2020 ◽  
Vol 198 ◽  
pp. 04036
Author(s):  
JI Xiaolei ◽  
XU Lanlan ◽  
YANG Guoping

Ecological slope protection is of great importance for preventing the water and soil loss on bare slopes, improving the ecological environment, and realizing the sustainable ecosystem development. The root-soil composite slope consisting of homogenous soil mass and oleander root system was taken as the study object. Based on the mechanics principle of soil reinforcement by roots in ecological slope protection, the influences of the lateral root quantity of plants and included angle between main root and lateral root on the slope protection were investigated via the finite element (FE) software ABAQUS. The simulation results show that the larger the quantity of lateral roots, the more obvious the displacement reduction of the soil mass on the slope surface will be. The slope protection effect varies with the root morphology, the included angle between main root and lateral root is an important factor influencing the slope protection effect of plants, and the slope protection effect at included angle of 30° is apparently superior to that at 90°. The research results can provide a theoretical support for the plant selection in the ecological slope protection.


2019 ◽  
Vol 175 ◽  
pp. 90-101 ◽  
Author(s):  
Waseem Bashir ◽  
Sumera Anwar ◽  
Qiang Zhao ◽  
Iqbal Hussain ◽  
Futi Xie

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Sandro José Conde ◽  
Renata de Azevedo M. Luvizotto ◽  
Maria Teresa Síbio ◽  
Célia Regina Nogueira

Author(s):  
Thomas Armand ◽  
Michelle Cullen ◽  
Florentin Boiziot ◽  
Lingyu Li ◽  
Wieland Fricke

Abstract Background Mineral nutrient limitation affects the water flow through plants. We wanted to test on barley whether any change in root-to-shoot ratio in response to low supply of nitrogen and phosphate is accompanied by changes in root and cell hydraulic properties and involves changes in aquaporin (AQP) gene expression and root apoplastic barriers (suberin lamellae, Casparian bands). Methods Plants were grown hydroponically on complete nutrient solution or on solution containing only 3.3 % or 2.5 % of the control level of nutrient. Plants were analysed when they were 14–18 d old. Results Nutrient-limited plants adjusted water flow to an increased root-to-shoot surface area ratio through a reduction in root hydraulic conductivity (Lp) as determined through exudation analyses. Cortex cell Lp (cell pressure probe analyses) decreased in the immature but not the mature region of the main axis of seminal roots and in primary lateral roots. The aquaporin inhibitor HgCl2 reduced root Lp most in nutrient-sufficient control plants. Exchange of low-nutrient for control media caused a rapid (20–80 min) and partial recovery in Lp, though cortex cell Lp did not increase in any of the root regions analysed. The gene expression level (qPCR analyses) of five plasma membrane-localized AQP isoforms did not change in bulk root extracts, while the formation of apoplastic barriers increased considerably along the main axis of root and lateral roots in low-nutrient treatments. Conclusions Decrease in root and cortex cell Lp enables the adjustment of root water uptake to increased root-to-shoot area ratio in nutrient-limited plants. Aquaporins are the prime candidate to play a key role in this response. Modelling of water flow suggests that some of the reduction in root Lp is due to increased formation of apoplastic barriers.


2021 ◽  
Vol 137 ◽  
pp. 455-462
Author(s):  
Ya-Dong Shao ◽  
Xian-Chun Hu ◽  
Qiang-Sheng Wu ◽  
Tian-Yuan Yang ◽  
A.K. Srivastava ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document