Impact of channel structure on a manufacturer's bundling decision with an application to digital goods

Author(s):  
Qingning Cao ◽  
Xianjun Geng ◽  
Jun Zhang
2018 ◽  
Author(s):  
Jiajun Wang ◽  
Jayesh Arun Bafna ◽  
Satya Prathyusha Bhamidimarri ◽  
Mathias Winterhalter

Biological channels facilitate the exchange of small molecules across membranes, but surprisingly there is a lack of general tools for the identification and quantification of transport (i.e., translocation and binding). Analyzing the ion current fluctuation of a typical channel with its constriction region in the middle does not allow a direct conclusion on successful transport. For this, we created an additional barrier acting as a molecular counter at the exit of the channel. To identify permeation, we mainly read the molecule residence time in the channel lumen as the indicator whether the molecule reached the exit of the channel. As an example, here we use the well-studied porin, OmpF, an outer membrane channel from <i>E. coli</i>. Inspection of the channel structure suggests that aspartic acid at position 181 is located below the constriction region (CR) and we subsequently mutated this residue to cysteine, where else cysteine free and functionalized it by covalent binding with 2-sulfonatoethyl methanethiosulfonate (MTSES) or the larger glutathione (GLT) blockers. Using the dwell time as the signal for transport, we found that both mono-arginine and tri-arginine permeation process is prolonged by 20% and 50% respectively through OmpF<sub>E181C</sub>MTSES, while the larger sized blocker modification OmpF<sub>E181C</sub>GLT drastically decreased the permeation of mono-arginine by 9-fold and even blocked the pathway of the tri-arginine. In case of the hepta-arginine as substrate, both chemical modifications led to an identical ‘blocked’ pattern observed by the dwell time of ion current fluctuation of the OmpF<sub>wt</sub>. As an instance for antibiotic permeation, we analyzed norfloxacin, a fluoroquinolone antimicrobial agent. The modulation of the interaction dwell time suggests possible successful permeation of norfloxacin across OmpF<sub>wt</sub>. This approach may discriminate blockages from translocation events for a wide range of substrates. A potential application could be screening for scaffolds to improve the permeability of antibiotics.


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


Author(s):  
Qian-Yu Wang ◽  
Zheng-Min Zhang ◽  
Lin Liu ◽  
Lu Bai ◽  
Rui-Ying Bao ◽  
...  

Poly(L-lactide) (PLA)/TiO2/Pt composite fiber membrane with internal porous channel structure is fabricated by skillfully tuning the breath figure mechanism and vapor induced phase separation mechanism with solute and solvent matching...


Sign in / Sign up

Export Citation Format

Share Document