scholarly journals A novel putative member of the family Benyviridae is associated with soilborne wheat mosaic disease in Brazil

2019 ◽  
Vol 68 (3) ◽  
pp. 588-600 ◽  
Author(s):  
J. B. Valente ◽  
F. S. Pereira ◽  
L. A. Stempkowski ◽  
M. Farias ◽  
P. Kuhnem ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2713-2719 ◽  
Author(s):  
Fei Xing ◽  
Wanying Hou ◽  
Sebastien Massart ◽  
Dehang Gao ◽  
Wenhui Li ◽  
...  

Apple mosaic disease is widespread in the major apple-producing areas in China and is frequently associated with the presence of the newly identified Apple necrotic mosaic virus (ApNMV), belonging to subgroup 3 of Ilarvirus genus in the family of Bromoviridae. Mosaic symptoms were also observed in a hawthorn tree. Deep sequencing revealed the hawthorn tree with mosaic symptom was infected by ApNMV, which was confirmed by RT-PCR. The complete nucleotide sequences of RNA1 (3,378 nt), RNA2 (2,778 nt), and RNA3 (1,917 nt) of ApNMV from the hawthorn were obtained, sharing 93.8 to 96.8%, 89.7 to 96.1%, and 89.8 to 94.6% nucleotide identities with those from apples and crabapples, respectively. Two hypervariable regions were found, which showed 59.2 to 85.7% and 64.0 to 89.3% sequence identities at position 142 to 198 aa and at position 780 to 864 aa in the POL protein, respectively, between the hawthorn isolate and other isolates (apple, crabapple). A grafting test demonstrated that ApNMV was easily transmissible from hawthorns to apple trees, with severe chlorosis, yellowing, mosaic, curling, and necrosis. In addition, a total of 11,685 hawthorn trees were surveyed for the incidence of mosaic disease from five provinces in China, and only six were found showing typical mosaic symptoms. A total of 145 individual trees (six symptomatic, 68 asymptomatic, and 71 other symptoms) were tested for the presence or absence of ApNMV by RT-PCR. Among them, six symptomatic, four asymptomatic, and 10 other symptomatic trees tested positive for ApNMV. Taken together, these results demonstrated that the hawthorn tree was identified as a new natural host for ApNMV with a relatively low frequency (13.8%, 20 out of 145) in the main producing areas, and it was likely to be the causal pathogen of hawthorn mosaic disease.



2017 ◽  
Vol 5 (37) ◽  
Author(s):  
Yeonhwa Jo ◽  
Myung-Kyu Song ◽  
Hoseong Choi ◽  
Jae-Seong Park ◽  
Jae-Wung Lee ◽  
...  

ABSTRACT Here, we report the genome sequence of grapevine virus T (GVT), a novel single-stranded RNA virus identified from a transcriptome of grapevine. The genome of GVT is 8,701 nucleotides in length and encodes five open reading frames. GVT is a putative member of the genus Foveavirus in the family Betaflexiviridae.



2011 ◽  
Vol 9 (2) ◽  
pp. 371-376 ◽  
Author(s):  
Clarianna Martins Baicere-Silva ◽  
Ricardo C. Benine ◽  
Irani Quagio-Grassiotto

The genus Markiana was until recently recognized as incertae sedis in the family Characidae, even though alternative placements for this genus have been advanced since its original description. More recently, it was hypothesized that Markiana nigripinnis is part of a clade informally named the Astyanax clade, indicating the putative close relationship of Markiana with the genus Astyanax. Examination of sperm ultrastructure of representatives of Astyanax and M. nigripinnis shows no evidence for this hypothesized close relationship. Rather, the spermatozoa of M. nigripinnis share characters found in spermatozoa of the non-inseminating members of the subfamily Stevardiinae, such as an angle of nuclear rotation equal to 85º resulting in a lateral position of the double nuclear fossa and flagellum. As with the non-inseminating Stevardiinae, sperm nuclei are also slightly elongate toward the flagellum, the proximal centriole is partially inside the nuclear fossa and anterior and oblique to the distal centriole, and the midpiece is short and strongly asymmetric. Additionally, M. nigripinnis shares with the other members of the Stevardiinae the presence of only four teeth in the inner row of the premaxillary and a short triangular ectopterygoid, which is never more than twice the length of the palatine.



2009 ◽  
Vol 90 (5) ◽  
pp. 1281-1288 ◽  
Author(s):  
Toufic Elbeaino ◽  
Michele Digiaro ◽  
Abdulkader Alabdullah ◽  
Angelo De Stradis ◽  
Angelantonio Minafra ◽  
...  

Several dsRNA bands (approx. 0.6–7 kbp in size) were recovered from tissues of mosaic-diseased fig seedlings which contained the enveloped round structures known as double membrane bodies (DMBs). blast analysis of a 4353 and a 1120 nt sequence from the two largest RNA segments showed homology with the polymerase and the putative glycoprotein precursor genes of negative-sense single-stranded RNA viruses of the family Bunyaviridae. Negative- and positive-sense riboprobes designed from both RNA segments hybridized to two bands of approximately 7 and 2.3 kbp in Northern blots of dsRNAs. Thus, these segments were identified as putative RNA-1 and RNA-2 of a novel virus for which the name fig mosaic virus (FMV) is proposed. Identity levels of predicted amino acids of the protein encoded by FMV RNA-1 with those of species of the family Bunyaviridae and European mountain ash ringspot-associated virus (EMERaV) were 28 and 54 %, respectively. RNA-2 showed 38 % identity at the amino acid level only with EMARaV. RNA-1 segment contained five conserved motifs (A–E) and an endonucleolytic centre of comparable genes of L RNA of bunyaviruses and EMARaV RNA-1. In a phylogenetic tree constructed with RdRp sequences, EMARaV grouped with FMV in a clade distinct from those of all bunyavirus genera. The consistent association of DMBs with mosaic symptoms and the results of molecular investigations strongly indicate that DMBs are particles of FMV, the aetiological agent of fig mosaic disease.



Phytotaxa ◽  
2019 ◽  
Vol 419 (1) ◽  
pp. 63-76 ◽  
Author(s):  
LENKA ŠTENCLOVÁ ◽  
KAROLINA FUČÍKOVÁ

The clade that currently represents the green algal family Microsporaceae is one of the few filament-forming groups of Chlorophyceae. Molecular phylogenies show this clade containing the genus Microspora and the more recently circumscribed Parallela, whose filaments are loosely arranged and often multiseriate. We initially investigated the enigmatic bog-loving Dispora speciosa as a commonly accepted member of the mucilage-forming Radiococcaceae or a putative member of crucigenoid chlorophytes (a non-monophyletic group formerly placed in Scenedesmaceae) based on its two-dimensional colony formation. However, our plastid and nuclear ribosomal phylogenies confidently placed Dispora within the genus Parallela instead, and therefore distantly related to both Radiococcaceae and crucigenoids. Upon further examination of the cell morphology and ultrastructure, we found several corresponding features between Dispora and Parallela, despite Dispora’s apparent coccoid-colonial gross morphology. Both genera have cells with a parietal plastid positioned around a large central nucleus. The loose, multiseriate filament formation in Parallela can be interpreted as similar to Dispora’s flat colony formation in its natural state. Because we only present data from one non-type species and strain of Dispora, we cannot merge the entire genus with Parallela. We do however argue that D. speciosa, of which this strain is the sole available, morphologically and ecologically faithful representative, should be transferred into Parallela, and the specimen prepared from strain ACOI 1508 be designated as type. Our study also impacts the current view on evolution of multicellular (colonial and filamentous) forms in Chlorophyceae.



PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254533
Author(s):  
Julien Kowalewski ◽  
Théo Paris ◽  
Catherine Gonzalez ◽  
Etienne Lelièvre ◽  
Lina Castaño Valencia ◽  
...  

In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio. Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.



2017 ◽  
Vol 5 (37) ◽  
Author(s):  
Yeonhwa Jo ◽  
Myung-Kyu Song ◽  
Hoseong Choi ◽  
Jae-Seong Park ◽  
Jae-Wung Lee ◽  
...  

ABSTRACT Here, we report the genome sequence of grapevine virus K (GVK), a novel single-stranded RNA virus identified from a transcriptome of grapevine. The genome of GVK is 7,476 nucleotides in length and encodes 5 open reading frames. GVK is a putative member of the genus Vitivirus in the family Betaflexiviridae.



2010 ◽  
Vol 152 (1-2) ◽  
pp. 10-18 ◽  
Author(s):  
Abdulkader Alabdullah ◽  
Angelantonio Minafra ◽  
Toufic Elbeaino ◽  
Maria Saponari ◽  
Vito Savino ◽  
...  


2001 ◽  
Vol 82 (10) ◽  
pp. 2549-2558 ◽  
Author(s):  
Qi Huang ◽  
John S. Hartung

Citrus yellow mosaic virus (CYMV), a member of the family Caulimoviridae, genus Badnavirus, causes citrus mosaic disease, a disease that occurs commonly in India. The CYMV genome has been cloned and its complete nucleotide sequence determined. Its DNA genome is 7559 bp in length and contains six putative open reading frames (ORFs), all on the plus-strand of the genome and each capable of encoding proteins with a molecular mass of greater than 10 kDa. ORF 3, the largest ORF, encodes a putative polyprotein for functions involved in virus movement, assembly and replication. The other ORFs encode proteins whose exact functions are not completely understood. The genome also contains a plant tRNAmet-binding site, which may serve as a primer for minus-strand DNA synthesis, in its intergenic region. Phylogenetic analysis of the badnaviruses revealed that CYMV is most closely related to Cacao swollen shoot virus. It was demonstrated that a construct containing 1·4 copies of the cloned CYMV genome could infect sweet orange via Agrobacterium-mediated inoculation.



2015 ◽  
Vol 105 (7) ◽  
pp. 1026-1032 ◽  
Author(s):  
Mysore R. Sudarshana ◽  
Keith L. Perry ◽  
Marc F. Fuchs

Grapevine red blotch-associated virus (GRBaV) is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae. This virus is associated with red blotch disease that was first reported in California in 2008. It affects the profitability of vineyards by substantially reducing fruit quality and ripening. In red-berried grapevine cultivars, foliar disease symptoms consist of red blotches early in the season that can expand and coalesce across most of the leaf blade later in the season. In white-berried grapevine cultivars, foliar disease symptoms are less conspicuous and generally involve irregular chlorotic areas that may become necrotic late in the season. Determining the GRBaV genome sequence yielded critical information for the design of primers for polymerase chain reaction-based diagnostics. To date, GRBaV has been reported in the major grape-growing areas in North America and two distinct phylogenetic clades have been described. Spread of GRBaV is suspected in certain vineyards but a vector of epidemiological significance has yet to be identified. Future research will need to focus on virus spread, the production of clean planting stocks, and the development of management options that are effective, economical, and environmentally friendly.



Sign in / Sign up

Export Citation Format

Share Document