scholarly journals Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254533
Author(s):  
Julien Kowalewski ◽  
Théo Paris ◽  
Catherine Gonzalez ◽  
Etienne Lelièvre ◽  
Lina Castaño Valencia ◽  
...  

In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio. Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.

Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 517 ◽  
Author(s):  
Daniel García-Souto ◽  
Sandra Alonso-Rubido ◽  
Diana Costa ◽  
José Eirín-López ◽  
Emilio Rolán-Álvarez ◽  
...  

Periwinkles of the family Littorinidae (Children, 1834) are common members of seashore littoral communities worldwide. Although the family is composed of more than 200 species belonging to 18 genera, chromosome numbers have been described in only eleven of them. A molecular cytogenetic analysis of nine periwinkle species, the rough periwinkles Littorina arcana, L. saxatilis, and L. compressa, the flat periwinkles L. obtusata and L. fabalis, the common periwinkle L. littorea, the mangrove periwinkle Littoraria angulifera, the beaded periwinkle Cenchritis muricatus, and the small periwinkle Melarhaphe neritoides was performed. All species showed diploid chromosome numbers of 2n = 34, and karyotypes were mostly composed of metacentric and submetacentric chromosome pairs. None of the periwinkle species showed chromosomal differences between male and female specimens. The chromosomal mapping of major and minor rDNA and H3 histone gene clusters by fluorescent in situ hybridization demonstrated that the patterns of distribution of these DNA sequences were conserved among closely related species and differed among less related ones. All signals occupied separated loci on different chromosome pairs without any evidence of co-localization in any of the species.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Uedson Pereira Jacobina ◽  
Marcelo de Bello Cioffi ◽  
Luiz Gustavo Rodrigues Souza ◽  
Leonardo Luiz Calado ◽  
Manoel Tavares ◽  
...  

The cobia,Rachycentron canadum, a species of marine fish, has been increasingly used in aquaculture worldwide. It is the only member of the family Rachycentridae (Perciformes) showing wide geographic distribution and phylogenetic patterns still not fully understood. In this study, the species was cytogenetically analyzed by different methodologies, including Ag-NOR and chromomycin A3(CMA3)/DAPI staining, C-banding, early replication banding (RGB), andin situfluorescent hybridization with probes for 18S and 5S ribosomal genes and for telomeric sequences (TTAGGG)n. The results obtained allow a detailed chromosomal characterization of the Atlantic population. The chromosome diversification found in the karyotype of the cobia is apparently related to pericentric inversions, the main mechanism associated to the karyotypic evolution of Perciformes. The differential heterochromatin replication patterns found were in part associated to functional genes. Despite maintaining conservative chromosomal characteristics in relation to the basal pattern established for Perciformes, some chromosome pairs in the analyzed population exhibit markers that may be important for cytotaxonomic, population, and biodiversity studies as well as for monitoring the species in question.


2014 ◽  
Vol 81 (2) ◽  
pp. 699-712 ◽  
Author(s):  
Zheng Wang ◽  
Dagmar H. Leary ◽  
Anthony P. Malanoski ◽  
Robert W. Li ◽  
W. Judson Hervey ◽  
...  

ABSTRACTBiocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O2reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no growth. Attempts to cultivate isolates from biocathode environmental enrichments often fail due to a lack of some advantage provided by life in a consortium, highlighting the need to study and understand biocathode consortiain situ. Here, we present metagenomic and metaproteomic characterization of a previously described biocathode biofilm (+310 mV versus a standard hydrogen electrode [SHE]) enriched from seawater, reducing O2, and presumably fixing CO2for biomass generation. Metagenomics identified 16 distinct cluster genomes, 15 of which could be assigned at the family or genus level and whose abundance was roughly divided betweenAlpha- andGammaproteobacteria. A total of 644 proteins were identified from shotgun metaproteomics and have been deposited in the the ProteomeXchange with identifier PXD001045. Cluster genomes were used to assign the taxonomic identities of 599 proteins, withMarinobacter,Chromatiaceae, andLabrenziathe most represented. RubisCO and phosphoribulokinase, along with 9 other Calvin-Benson-Bassham cycle proteins, were identified fromChromatiaceae. In addition, proteins similar to those predicted for iron oxidation pathways of known iron-oxidizing bacteria were observed forChromatiaceae. These findings represent the first description of putative EET and CO2fixation mechanisms for a self-regenerating, self-sustaining multispecies biocathode, providing potential targets for functional engineering, as well as new insights into biocathode EET pathways using proteomics.


2020 ◽  
Vol 21 (21) ◽  
pp. 7915
Author(s):  
Denisa Šimoníková ◽  
Alžběta Němečková ◽  
Jana Čížková ◽  
Allan Brown ◽  
Rony Swennen ◽  
...  

Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.


2021 ◽  
Vol 8 ◽  
Author(s):  
Silvia Arossa ◽  
Alan Barozzi ◽  
Matteo Callegari ◽  
Shannon G. Klein ◽  
Anieka J. Parry ◽  
...  

The characterization of the internal microenvironment of symbiotic marine invertebrates is essential for a better understanding of the symbiosis dynamics. Microalgal symbionts (of the family: Symbiodiniaceae) influence diel fluctuations of in host O2 and pH conditions through their metabolic activities (i.e., photosynthesis and respiration). These variations may play an important role in driving oxygen budgets and energy demands of the holobiont and its responses to climate change. In situ measurements using microsensors were used to resolve the O2 and pH diel fluctuations in the oral arms of non-calcifying cnidarian model species Cassiopea sp. (the “upside-down jellyfish”), which has an obligatory association with Symbiodiniaceae. Before sunrise, the internal O2 and pH levels were substantially lower than those in ambient seawater conditions (minimum average levels: 61.92 ± 5.06 1SE μmol O2 L–1 and 7.93 ± 0.02 1SE pH units, respectively), indicating that conditions within Cassiopea’s oral arms were acidified and hypoxic relative to the surrounding seawater. Measurements performed during the afternoon revealed hyperoxia (maximum average levels: 546.22 ± 16.45 1SE μmol O2 L–1) and internal pH similar to ambient levels (8.61 ± 0.02 1SE pH units). The calculated gross photosynthetic rates of Cassiopea sp. were 0.04 ± 0.013 1SE nmol cm–2 s–1 in individuals collected at night and 0.08 ± 0.02 1SE nmol cm–2 s–1 in individuals collected during the afternoon.


2018 ◽  
Vol 12 (2) ◽  
pp. 145-162 ◽  
Author(s):  
Clóvis C. Motta-Neto ◽  
André Marques ◽  
Gideão W.W.F. Costa ◽  
Marcelo B. Cioffi ◽  
Luiz A.C. Bertollo ◽  
...  

Representatives of the order Labriformes show karyotypes of extreme conservatism together with others with high chromosomal diversification. However, the cytological characterization of epigenetic modifications remains unknown for the majority of the species. In the family Labridae, the most abundant fishes on tropical reefs, the genomes of the genus Bodianus Bloch, 1790 have been characterized by the occurrence of a peculiar chromosomal region, here denominated BOD. This region is exceptionally decondensed, heterochromatic, argentophilic, GC-neutral and, in contrast to classical secondary constrictions, shows no signals of hybridization with 18S rDNA probes. In order to characterize the BOD region, the methylation pattern, the distribution of Alu and Tol2 retrotransposons and of 18S and 5S rDNA sites, respectively, were analyzed by Fluorescence In Situ Hybridization (FISH) on metaphase chromosomes of two Bodianus species, B.insularis Gomon & Lubbock, 1980 and B.pulchellus (Poey, 1860). Immunolocalization of the 5-methylcytosine revealed hypermethylated chromosomal regions, dispersed along the entire length of the chromosomes of both species, while the BOD regions exhibited a hypomethylated pattern. Hypomethylation of the BOD region is associated with the precise co-location of Tol2 and Alu elements, suggesting their active participation in the regulatory epigenetic process. This evidence underscores a probable differential methylation action during the cell cycle, as well as the role of Tol2/Alu elements in functional processes of fish genomes.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Sign in / Sign up

Export Citation Format

Share Document