Exogenous melatonin enhances the ROS metabolism, antioxidant defense‐related gene expression and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance

2021 ◽  
Author(s):  
Abdelaleim Ismail ElSayed ◽  
Mohammed Suhail Rafudeen ◽  
Ayman M. Gomaa ◽  
Mirza Hasanuzzaman

2017 ◽  
Vol 36 (3) ◽  
pp. 578-589 ◽  
Author(s):  
Jingtao Hu ◽  
Guoping Chen ◽  
Wencheng Yin ◽  
Baolu Cui ◽  
Xiaohui Yu ◽  
...  


2021 ◽  
Vol 22 (11) ◽  
pp. 5957
Author(s):  
Hyun Jin Chun ◽  
Dongwon Baek ◽  
Byung Jun Jin ◽  
Hyun Min Cho ◽  
Mi Suk Park ◽  
...  

Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.



2014 ◽  
Vol 171 (6) ◽  
pp. 382-388 ◽  
Author(s):  
Hiroaki Kato ◽  
Tamao Saito ◽  
Hidetaka Ito ◽  
Yoshibumi Komeda ◽  
Atsushi Kato


2013 ◽  
Vol 171 (2) ◽  
pp. 488-503 ◽  
Author(s):  
P. T. Prathima ◽  
M. Raveendran ◽  
K. K. Kumar ◽  
P. R. Rahul ◽  
V. Ganesh Kumar ◽  
...  




2014 ◽  
Vol 7 (2) ◽  
pp. 116-120 ◽  
Author(s):  
Latique Salma ◽  
◽  
Elouaer Mohamed Aymen ◽  
Souguir Maher ◽  
Aloui Hassen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document