Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract

2015 ◽  
Vol 193 ◽  
pp. 105-113 ◽  
Author(s):  
Mostafa M. Rady ◽  
Gamal F. Mohamed
2013 ◽  
Vol 32 (2) ◽  
pp. 318-327 ◽  
Author(s):  
Eloísa Hernández-Lucero ◽  
Aída Araceli Rodríguez-Hernández ◽  
María Azucena Ortega-Amaro ◽  
Juan Francisco Jiménez-Bremont

2020 ◽  
Vol 33 (4) ◽  
pp. 1092-1101
Author(s):  
ANDRÉ ALISSON RODRIGUES DA SILVA ◽  
GEOVANI SOARES DE LIMA ◽  
CARLOS ALBERTO VIEIRA DE AZEVEDO ◽  
LUANA LUCAS DE SÁ ALMEIDA VELOSO ◽  
HANS RAJ GHEYI

ABSTRACT The search for alternatives that enable the use of saline waters in agriculture has become constant. In this context, the objective was to evaluate the effects of salicylic acid in mitigating salt stress effects on the growth and gas exchange of soursop cv. ‘Morada Nova’. The study was conducted in a greenhouse, in the municipality of Campina Grande - PB, Brazil. Treatments were distributed in randomized blocks, in a 5 x 4 factorial arrangement, corresponding to five levels of electrical conductivity of irrigation water - ECw (0.8; 1.6; 2.4; 3.2 and 4.0 dS m-1) and four concentrations of salicylic acid - SA (0; 1.2; 2.4 and 3.6 mM), with three replicates. Irrigation with saline water compromised the growth and gas exchange of soursop cv. ‘Morada Nova’. However, exogenous application of salicylic acid induced tolerance to salt stress in soursop plants, as their growth, transpiration, stomatal conductance, photosynthesis and instantaneous carboxylation efficiency were favored by the application of salicylic acid, even when exposed to water salinity.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 409
Author(s):  
Yu ◽  
Yu ◽  
Hou ◽  
Zhang ◽  
Guo ◽  
...  

The common bean (Phaseolus vulgaris L.), the most important food legume for human nutrition globally, contributes greatly to the improvement of soil fertility in semi-dry lands where most of the soil is already salinized or alkalized, such as in the Songnen Plain of China. In this study, we investigated the effects of salt stress (neutral and alkaline) on the salt-tolerant common bean. Seed germination, seedling growth, photosynthesis, and osmotic adjustment were assessed. Neutral and alkaline salt growth environments were simulated using NaCl and NaHCO3, respectively. The results indicated that at ≥60 mmol·L−1, both NaCl and NaHCO3 caused significant delays in seedling emergence and decreased seedling emergence rates. NaHCO3 stress suppressed seedling survival regardless of concentration; however, only NaCl concentrations >60 mmol·L−1 had the same effect. Alkaline salt stress remarkably suppressed photosynthesis and seedling establishment. The common bean compensated for the increase in inorganic anion concentration (influx of Na+) by synthesizing more organic acids and soluble sugars. This adaptive mechanism enabled the common bean to balance the large inflow of cations for maintaining a stable cell pH environment under alkaline salt stress.


Sign in / Sign up

Export Citation Format

Share Document