A simple framework to identify optimal cost‐effective risk thresholds for a single screen: Comparison to Decision Curve Analysis

Author(s):  
Hormuzd A. Katki ◽  
Ionut Bebu
2015 ◽  
Vol 143 (11-12) ◽  
pp. 681-687 ◽  
Author(s):  
Tomislav Pejovic ◽  
Miroslav Stojadinovic

Introduction. Accurate precholecystectomy detection of concurrent asymptomatic common bile duct stones (CBDS) is key in the clinical decision-making process. The standard preoperative methods used to diagnose these patients are often not accurate enough. Objective. The aim of the study was to develop a scoring model that would predict CBDS before open cholecystectomy. Methods. We retrospectively collected preoperative (demographic, biochemical, ultrasonographic) and intraoperative (intraoperative cholangiography) data for 313 patients at the department of General Surgery at Gornji Milanovac from 2004 to 2007. The patients were divided into a derivation (213) and a validation set (100). Univariate and multivariate regression analysis was used to determine independent predictors of CBDS. These predictors were used to develop scoring model. Various measures for the assessment of risk prediction models were determined, such as predictive ability, accuracy, the area under the receiver operating characteristic curve (AUC), calibration and clinical utility using decision curve analysis. Results. In a univariate analysis, seven risk factors displayed significant correlation with CBDS. Total bilirubin, alkaline phosphatase and bile duct dilation were identified as independent predictors of choledocholithiasis. The resultant total possible score in the derivation set ranged from 7.6 to 27.9. Scoring model shows good discriminatory ability in the derivation and validation set (AUC 94.3 and 89.9%, respectively), excellent accuracy (95.5%), satisfactory calibration in the derivation set, similar Brier scores and clinical utility in decision curve analysis. Conclusion. Developed scoring model might successfully estimate the presence of choledocholithiasis in patients planned for elective open cholecystectomy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Suyu Wang ◽  
Yue Yu ◽  
Wenting Xu ◽  
Xin Lv ◽  
Yufeng Zhang ◽  
...  

Abstract Background The prognostic roles of three lymph node classifications, number of positive lymph nodes (NPLN), log odds of positive lymph nodes (LODDS), and lymph node ratio (LNR) in lung adenocarcinoma are unclear. We aim to find the classification with the strongest predictive power and combine it with the American Joint Committee on Cancer (AJCC) 8th TNM stage to establish an optimal prognostic nomogram. Methods 25,005 patients with T1-4N0–2M0 lung adenocarcinoma after surgery between 2004 to 2016 from the Surveillance, Epidemiology, and End Results database were included. The study cohort was divided into training cohort (13,551 patients) and external validation cohort (11,454 patients) according to different geographic region. Univariate and multivariate Cox regression analyses were performed on the training cohort to evaluate the predictive performance of NPLN (Model 1), LODDS (Model 2), LNR (Model 3) or LODDS+LNR (Model 4) respectively for cancer-specific survival and overall survival. Likelihood-ratio χ2 test, Akaike Information Criterion, Harrell concordance index, integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were used to evaluate the predictive performance of the models. Nomograms were established according to the optimal models. They’re put into internal validation using bootstrapping technique and external validation using calibration curves. Nomograms were compared with AJCC 8th TNM stage using decision curve analysis. Results NPLN, LODDS and LNR were independent prognostic factors for cancer-specific survival and overall survival. LODDS+LNR (Model 4) demonstrated the highest Likelihood-ratio χ2 test, highest Harrell concordance index, and lowest Akaike Information Criterion, and IDI and NRI values suggested Model 4 had better prediction accuracy than other models. Internal and external validations showed that the nomograms combining TNM stage with LODDS+LNR were convincingly precise. Decision curve analysis suggested the nomograms performed better than AJCC 8th TNM stage in clinical practicability. Conclusions We constructed online nomograms for cancer-specific survival and overall survival of lung adenocarcinoma patients after surgery, which may facilitate doctors to provide highly individualized therapy.


2021 ◽  
Author(s):  
Yijun Wu ◽  
Hongzhi Liu ◽  
Jianxing Zeng ◽  
Yifan Chen ◽  
Guoxu Fang ◽  
...  

Abstract Background and Objectives Combined hepatocellular cholangiocarcinoma (cHCC) has a high incidence of early recurrence. The objective of this study is to construct a model predicting very early recurrence (VER)(ie, recurrence within 6 months after surgery) of cHCC. Methods 131 consecutive patients from Eastern Hepatobiliary Surgery Hospital served as a development cohort to construct a nomogram predicting VER by using multivariable logistic regression analysis. The model was internally and externally validated in an validation cohort of 90 patients from Mengchao Hepatobiliary Hospital using the C concordance statistic, calibration analysis and decision curve analysis (DCA). Results The VER nomogram contains microvascular invasion(MiVI), macrovascular invasion(MaVI) and CA19-9>25mAU/mL. The model shows good discrimination with C-indexes of 0.77 (95%CI: 0.69 - 0.85 ) and 0.76 (95%CI:0.66 - 0.86) in the development cohort and validation cohort respectively. Decision curve analysis demonstrated that the model are clinically useful and the calibration of our model was favorable. Our model stratified patients into two different risk groups, which exhibited significantly different VER. Conclusions Our model demonstrated favorable performance in predicting VER in cHCC patients.


HLA ◽  
2018 ◽  
Vol 92 (6) ◽  
pp. 384-391
Author(s):  
Leonardo M. Amorim ◽  
Tiago H. S. Santos ◽  
Jill A. Hollenbach ◽  
Paul J. Norman ◽  
Wesley M. Marin ◽  
...  

2021 ◽  
Author(s):  
Yin-Hong Geng ◽  
Zhe Zhang ◽  
Jun-Jun Zhang ◽  
Bo Huang ◽  
Zui-Shuang Guo ◽  
...  

Abstract Objective. To construct a novel nomogram model that predicts the risk of hyperuricemia incidence in IgA nephropathy (IgAN) . Methods. Demographic and clinicopathological characteristics of 1184 IgAN patients in the First Affiliated Hospital of Zhengzhou University Hospital were collected. Univariate analysis and multivariate logistic regression were used to screen out hyperuricemia risk factors. The risk factors were used to establish a predictive nomogram model. The performance of the nomogram model was evaluated using an area under the receiver operating characteristic curve (AUC), calibration plots, and a decision curve analysis. Results. Independent predictors for hyperuricemia incidence risk included sex, hypoalbuminemia, hypertriglyceridemia, blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR), 24-hour urinaryprotein (24h TP), Gross and tubular atrophy/interstitial fibrosis (T). The nomogram model exhibited moderate prediction ability with an AUC of 0.834 ((95% CI 0.804–0.864)). The AUC from validation reached 0.787 (95% CI 0.736-0.839). The decision curve analysis displayed that the hyperuricemia risk nomogram was clinically applicable.Conclusion. Our novel and simple nomogram containing 8 factors may be useful in predicting hyperuricemia incidence risk in IgAN.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xi’E Hu ◽  
Jingyi Xue ◽  
Shujia Peng ◽  
Ping Yang ◽  
Zhenyu Yang ◽  
...  

BackgroundSentinel lymph node (SLN) biopsy is feasible for breast cancer (BC) patients with clinically negative axillary lymph nodes; however, complications develop in some patients after surgery, although SLN metastasis is rarely found. Previous predictive models contained parameters that relied on postoperative data, thus limiting their application in the preoperative setting. Therefore, it is necessary to find a new model for preoperative risk prediction for SLN metastasis to help clinicians facilitate individualized clinical decisions.Materials and MethodsBC patients who underwent SLN biopsy in two different institutions were included in the training and validation cohorts. Demographic characteristics, preoperative tumor pathological features, and ultrasound findings were evaluated. Multivariate logistic regression was used to develop the nomogram. The discrimination, accuracy, and clinical usefulness of the nomogram were assessed using Harrell’s C-statistic and ROC analysis, the calibration curve, and the decision curve analysis, respectively.ResultsA total of 624 patients who met the inclusion criteria were enrolled, including 444 in the training cohort and 180 in the validation cohort. Young age, high BMI, high Ki67, large tumor size, indistinct tumor margins, calcifications, and an aspect ratio ≥1 were independent predictive factors for SLN metastasis of BC. Incorporating these parameters, the nomogram achieved a robust predictive performance with a C-index and accuracy of 0.92 and 0.85, and 0.82 and 0.80 in the training and validation cohorts, respectively. The calibration curves also fit well, and the decision curve analysis revealed that the nomogram was clinically useful.ConclusionsWe established a nomogram to preoperatively predict the risk of SLN metastasis in BC patients, providing a non-invasive approach in clinical practice and serving as a potential tool to identify BC patients who may omit unnecessary SLN biopsy.


Sign in / Sign up

Export Citation Format

Share Document