Molecular phylogeny and revised classification of the New World subfamily Cryphocricinae, including the reinstatement of Ambrysinae (Insecta: Heteroptera: Nepomorpha: Naucoridae)

2021 ◽  
Author(s):  
Daniel Reynoso‐Velasco ◽  
Robert W. Sites
Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Marcos Godoy ◽  
Daniel A. Medina ◽  
Rudy Suarez ◽  
Sandro Valenzuela ◽  
Jaime Romero ◽  
...  

Piscine orthoreovirus (PRV) belongs to the family Reoviridae and has been described mainly in association with salmonid infections. The genome of PRV consists of about 23,600 bp, with 10 segments of double-stranded RNA, classified as small (S1 to S4), medium (M1, M2 and M3) and large (L1, L2 and L3); these range approximately from 1000 bp (segment S4) to 4000 bp (segment L1). How the genetic variation among PRV strains affects the virulence for salmonids is still poorly understood. The aim of this study was to describe the molecular phylogeny of PRV based on an extensive sequence analysis of the S1 and M2 segments of PRV available in the GenBank database to date (May 2020). The analysis was extended to include new PRV sequences for S1 and M2 segments. In addition, subgenotype classifications were assigned to previously published unclassified sequences. It was concluded that the phylogenetic trees are consistent with the original classification using the PRV genomic segment S1, which differentiates PRV into two major genotypes, I and II, and each of these into two subgenotypes, designated as Ia and Ib, and IIa and IIb, respectively. Moreover, some clusters of country- and host-specific PRV subgenotypes were observed in the subset of sequences used. This work strengthens the subgenotype classification of PRV based on the S1 segment and can be used to enhance research on the virulence of PRV.


Phytotaxa ◽  
2015 ◽  
Vol 203 (2) ◽  
pp. 85 ◽  
Author(s):  
Ya-Yi Huang ◽  
Scott A. Mori ◽  
Lawrence M. Kelly

Lecythidaceae subfam. Lecythidoideae is limited to the Neotropics and is the only naturally occurring subfamily of Lecythidaceae in the New World. A subset of genera with zygomorphic flowers—Bertholletia, Corythophora, Eschweilera and Lecythis—comprises a group of about 125 species called the Bertholletia clade. A previous study based on plastid ndhF and trnL-F genes supported the monophyly of Corythophora but suggested that Eschweilera and Lecythis are not monophyletic. Using this study as a baseline, we sampled more taxa and sequenced more loci to address the taxonomic problems of the ambiguous genera and to determine relationships within the Bertholletia clade. Our results support the monophyly of the Bertholletia clade as previously circumscribed. In addition, Corythophora is monophyletic, and the two accessions of Bertholletia excelsa come out together on the tree. Results of the simultaneous analysis do not support the monophyly of Lecythis or Eschweilera. Lecythis consists of four main groups (the Lecythis pisonis, L. poiteaui, L. chartacea, and L. corrugata clades), the last of which is nested within Eschweilera, and Eschweilera consists of three clades (the Eschweilera integrifolia, E. tetrapetala, and Eschweilera parvifolia clades). We compare our results with the generic classification presented in the latest monograph of neotropical Lecythidaceae and make recommendations for a revised generic classification of the Bertholletia clade of Lecythidaceae.


2001 ◽  
Vol 18 (6) ◽  
pp. 1059-1068 ◽  
Author(s):  
E. Brambilla ◽  
W.D. Travis ◽  
T.V. Colby ◽  
B. Corrin ◽  
Y. Shimosato

Zootaxa ◽  
2021 ◽  
Vol 4958 (1) ◽  
pp. 72-94
Author(s):  
ROBERT W. SITES

The genus Cryphocricos Signoret, 1850 was recently determined in a molecular phylogeny to be distantly related to other taxa of the subfamily Cryphocricinae to the extent that it is now once again the sole member of the subfamily. This exclusively New World group of aquatic bugs lives in fast and usually turbulent current and respires by means of a plastron. Efforts to identify morphological features to distinguish among the species have largely fallen short, and some species have been established based on features that exhibit a high degree of intraspecific variation overlapping those of other species. Presented here is a review of the 13 described species with discussions of their features and photos of type specimens, and three new species from Venezuela and Colombia are described. Also presented is a diagnostic attribute unique to the enigmatic Cryphocricos barozzii Signoret, 1850. 


2021 ◽  
Author(s):  
Pedro W Crous ◽  
Amy Y Rossman ◽  
Catherine Aime ◽  
Cavan Allen ◽  
Treena Burgess ◽  
...  

Names of phytopathogenic fungi and oomycetes are essential to communicate knowledge about species and their biology, control, and quarantine as well as for trade and research purposes. Many plant pathogenic fungi are pleomorphic, meaning that they produce different asexual (anamorph) and sexual (teleomorph) morphs in their lifecycles. Because of this, more than one name has been applied to different morphs of the same species, which has confused users of names. The onset of DNA technologies makes it possible to connect different morphs of the same species, resulting in a move to a more natural classification system for fungi, in which a single name for a genus as well as species can now be used. The move to a single nomenclature, as well as the advent of molecular phylogeny and the introduction of polythetic taxonomic approaches has been the main driving force for the re-classification of fungi, including pathogens. Nonetheless, finding the correct name for species remains challenging, but there is a series of steps or considerations that could greatly simplify this process, as outlined here. In addition to various online databases and resources, a list of accurate names is herewith provided of the accepted names of the most common genera and species of phytopathogenic fungi.


2016 ◽  
Vol 47 (1) ◽  
pp. 53-82 ◽  
Author(s):  
Werner P. Strümpher ◽  
Martin H. Villet ◽  
Catherine L. Sole ◽  
Clarke H. Scholtz

Extant genera and subgenera of the Trogidae (Coleoptera: Scarabaeoidea) are reviewed. Contemporary classifications of this family have been based exclusively on morphological characters. The first molecular phylogeny for the family recently provided strong support for the relationships between morphologically defined genera and subgenera. On the basis of morphological, molecular and biogeographical evidence, certain taxonomic changes to the genus-level classification of the family are now proposed. The family is confirmed as consisting of two subfamilies, Omorginae Nikolajev and Troginae MacLeay, the former with two genera,OmorgusErichson andPolynoncusBurmeister, and the latter with two genera,TroxFabricius andPhoberusMacLeaystat. rev.Phoberusis restored to generic rank to include all Afrotropical (including Madagascan endemic) species;Afromorgusis confirmed at subgeneric rank within the genusOmorgus; and the monotypic Madagascan genusMadagatroxsyn. n.is synonymised withPhoberus.The current synonymies ofPseudotroxRobinson (withTrox),ChesasBurmeister,LagopelusBurmeister andMegalotroxPreudhomme de Borre (all withOmorgus) are all accepted to avoid creating speculative synonyms before definitive phylogenetic evidence is available. New combinations resulting from restoringPhoberusto a monophyletic genus are listed in Appendix A.


2020 ◽  
Vol 5 (1) ◽  
pp. 17-38 ◽  
Author(s):  
K. Seto ◽  
S. Van Den Wyngaert ◽  
Y. Degawa ◽  
M. Kagami

During the last decade, the classification system of chytrids has dramatically changed based on zoospore ultrastructure and molecular phylogeny. In contrast to well-studied saprotrophic chytrids, most parasitic chytrids have thus far been only morphologically described by light microscopy, hence they hold great potential for filling some of the existing gaps in the current classification of chytrids. The genus Zygorhizidium is characterized by an operculate zoosporangium and a resting spore formed as a result of sexual reproduction in which a male thallus and female thallus fuse via a conjugation tube. All described species of Zygorhizidium are parasites of algae and their taxonomic positions remain to be resolved. Here, we examined morphology, zoospore ultrastructure, host specificity, and molecular phylogeny of seven cultures of Zygorhizidium spp. Based on thallus morphology and host specificity, one culture was identified as Z. willei parasitic on zygnematophycean green algae, whereas the others were identified as parasites of diatoms, Z. asterionellae on Asterionella, Z. melosirae on Aulacoseira, and Z. planktonicum on Ulnaria (formerly Synedra). According to phylogenetic analysis, Zygorhizidium was separated into two distinct order-level novel lineages; one lineage was composed singly of Z. willei, which is the type species of the genus, and the other included the three species of diatom parasites. Zoospore ultrastructural observation revealed that the two lineages can be distinguished from each other and both possess unique characters among the known orders within the Chytridiomycetes. Based on these results, we accommodate the three diatom parasites, Z. asterionellae, Z. melosirae, and Z. planktonicum in the distinct genus Zygophlyctis, and propose two new orders: Zygorhizidiales and Zygophlyctidales.


Taxon ◽  
2010 ◽  
Vol 59 (3) ◽  
pp. 809-828 ◽  
Author(s):  
Khatere Emadzade ◽  
Carlos Lehnebach ◽  
Peter Lockhart ◽  
Elvira Hörandl
Keyword(s):  

Zootaxa ◽  
2011 ◽  
Vol 2868 (1) ◽  
pp. 62 ◽  
Author(s):  
FLOYD W. SHOCKLEY ◽  
NATALIA J. VANDENBERG

During an examination of type material of the New World endomychid genus Bystus Guérin-Méneville (Anamorphinae), the type series of Alexia hirtula Kirsch from Peru was found to contain a mixture of different taxa, none of which belong to the genus Bystus, the subfamily Anamorphinae, or even the family Endomychidae. Alexia hirtula is transferred to Delphastus Casey (Coccinellidae: Microweiseinae: Serangiini), establishing the new combination, Delphastus hirtulus (Kirsch), and a lectotype is designated. Of the three paralectotypes, one appears to be conspecific with the lectotype, one is identified as an undescribed species of Microscymnus Champion (Coccinellidae: Cryptognathini), and one, a partial specimen lacking the head, pronotum, and one elytron, is identified as a species of Leiodidae in the tribe Scotocryptini, probably Aglyptinus Cockerell. A diagnosis and redescription of D. hirtulus is provided, and Gordon’s (1994) key to Delphastus is modified to accommodate the newly transferred species. The historical classification of D. hirtulus is discussed along with characters justifying its revised placement.


2015 ◽  
Vol 46 (5) ◽  
pp. 411-430 ◽  
Author(s):  
Morgan D. Jackson ◽  
Stephen A. Marshall ◽  
Jeffrey H. Skevington

DNA molecular data are used to generate a phylogeny for the micropezid subfamily Taeniapterinae. Thirty-two taeniapterine species were sampled, including 10 of the 20 New World genera recognized by Steyskal, as well as one genus formerly treated as a synonym of Poecilotylus Hennig (Hemichaeta Steyskal). Five species from the Micropezinae were included as outgroups. A total DNA dataset of 4705 bp, including mitochondrial genes (12S and cytochrome c oxidase I (COI)) and nuclear coding genes (wingless and CAD), was analysed using maximum parsimony and Bayesian inference. The genus Taeniaptera Macquart was found to be non-monophyletic with respect to the remainder of the Taeniapterini analysed here. Taeniaptera is restricted to the Taeniaptera trivittata Macquart species group, Mitromyia Cresson is resurrected to contain the Taeniaptera grata (Wulp) species group, and Paragrallomyia Hendel is resurrected to contain most species previously considered Taeniaptera. Poecilotylus is recognized as a paraphyletic group awaiting further research.


Sign in / Sign up

Export Citation Format

Share Document