Dynamic contact networks of swine movement in Manitoba, Canada: Characterization and implications for infectious disease spread

2019 ◽  
Vol 66 (5) ◽  
pp. 1910-1919 ◽  
Author(s):  
Carolyn Augusta ◽  
Graham W. Taylor ◽  
Rob Deardon

2018 ◽  
Vol 285 (1893) ◽  
pp. 20182201 ◽  
Author(s):  
Nele Goeyvaerts ◽  
Eva Santermans ◽  
Gail Potter ◽  
Andrea Torneri ◽  
Kim Van Kerckhove ◽  
...  

Airborne infectious diseases such as influenza are primarily transmitted from human to human by means of social contacts, and thus easily spread within households. Epidemic models, used to gain insight into infectious disease spread and control, typically rely on the assumption of random mixing within households. Until now, there has been no direct empirical evidence to support this assumption. Here, we present the first social contact survey specifically designed to study contact networks within households. The survey was conducted in Belgium (Flanders and Brussels) from 2010 to 2011. We analysed data from 318 households totalling 1266 individuals with household sizes ranging from two to seven members. Exponential-family random graph models (ERGMs) were fitted to the within-household contact networks to reveal the processes driving contact between household members, both on weekdays and weekends. The ERGMs showed a high degree of clustering and, specifically on weekdays, decreasing connectedness with increasing household size. Furthermore, we found that the odds of a contact between older siblings and between father and child are smaller than for any other pair. The epidemic simulation results suggest that within-household contact density is the main driver of differences in epidemic spread between complete and empirical-based household contact networks. The homogeneous mixing assumption may therefore be an adequate characterization of the within-household contact structure for the purpose of epidemic simulations. However, ignoring the contact density when inferring based on an epidemic model will result in biased estimates of within-household transmission rates. Further research regarding the implementation of within-household contact networks in epidemic models is necessary.



2021 ◽  
Vol 17 (12) ◽  
pp. e1009604
Author(s):  
Pratha Sah ◽  
Michael Otterstatter ◽  
Stephan T. Leu ◽  
Sivan Leviyang ◽  
Shweta Bansal

The spread of pathogens fundamentally depends on the underlying contacts between individuals. Modeling the dynamics of infectious disease spread through contact networks, however, can be challenging due to limited knowledge of how an infectious disease spreads and its transmission rate. We developed a novel statistical tool, INoDS (Identifying contact Networks of infectious Disease Spread) that estimates the transmission rate of an infectious disease outbreak, establishes epidemiological relevance of a contact network in explaining the observed pattern of infectious disease spread and enables model comparison between different contact network hypotheses. We show that our tool is robust to incomplete data and can be easily applied to datasets where infection timings of individuals are unknown. We tested the reliability of INoDS using simulation experiments of disease spread on a synthetic contact network and find that it is robust to incomplete data and is reliable under different settings of network dynamics and disease contagiousness compared with previous approaches. We demonstrate the applicability of our method in two host-pathogen systems: Crithidia bombi in bumblebee colonies and Salmonella in wild Australian sleepy lizard populations. INoDS thus provides a novel and reliable statistical tool for identifying transmission pathways of infectious disease spread. In addition, application of INoDS extends to understanding the spread of novel or emerging infectious disease, an alternative approach to laboratory transmission experiments, and overcoming common data-collection constraints.



2017 ◽  
Author(s):  
Nele Goeyvaerts ◽  
Eva Santermans ◽  
Gail Potter ◽  
Andrea Torneri ◽  
Kim Van Kerckhove ◽  
...  

Airborne infectious diseases such as influenza are primarily transmitted from human to human by means of social contacts and thus easily spread within households. Epidemic models, used to gain insight in infectious disease spread and control, typically rely on the assumption of random mixing within households. Until now there was no direct empirical evidence to support this assumption. Here, we present the first social contact survey specifically designed to study contact networks within households. The survey was conducted in Belgium (Flanders and Brussels) in 2010-2011. We analyzed data from 318 households totaling 1266 individuals with household sizes ranging from 2 to 7 members. Exponential-family random graph models (ERGMs) were fitted to the within-household contact networks to reveal the processes driving contact between household members, both on weekdays and weekends. The ERGMs showed a high degree of clustering and, specifically on weekdays, decreasing connectedness with increasing household size. Furthermore, we found that the odds of a contact between father and child is smaller than for any other pair except for older siblings. Epidemic simulation results suggest that within-household contact density is the main driver of differences in epidemic spread between complete and empirical-based household contact networks. The homogeneous mixing assumption may therefore be an adequate characterization of the within-household contact structure for the purpose of epidemic simulation. However, ignoring the contact density when inferring from an epidemic model will result in biased estimates of within-household transmission rates. Further research on the implementation of within-household contact networks in epidemic models is necessary.Significance StatementHouseholds have a pivotal role in the spread of airborne infectious diseases. Households are bridging units between schools and workplaces, and social contacts within households are frequent and intimate, allowing for rapid disease spread. Infectious disease models typically assume that members of a household contact each other randomly. Until now there was no direct empirical evidence to support this assumption. In this paper, we present the first social contact survey specifically designed to study contact networks within households with young children. We investigate which factors drive contacts between household members on one particular day by means of a statistical model. Our results suggest the importance of connectedness within households over heterogeneity in number of contacts.



2015 ◽  
Vol 370 (1669) ◽  
pp. 20140107 ◽  
Author(s):  
Meggan E. Craft

The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools.



2017 ◽  
Author(s):  
Pratha Sah ◽  
Michael Otterstatter ◽  
Stephan T. Leu ◽  
Sivan Leviyang ◽  
Shweta Bansal

AbstractThe spread of pathogens fundamentally depends on the underlying contacts between individuals. Modeling infectious disease dynamics through contact networks is sometimes challenging, however, due to a limited understanding of pathogen transmission routes and infectivity. We developed a novel tool, INoDS (Identifying Network models of infectious Disease Spread) that estimates the predictive power of empirical contact networks to explain observed patterns of infectious disease spread. We show that our method is robust to partially sampled contact networks, incomplete disease information, and enables hypothesis testing on transmission mechanisms. We demonstrate the applicability of our method in two host-pathogen systems: Crithidia bombi in bumble bee colonies and Salmonella in wild Australian sleepy lizard populations. The performance of INoDS in synthetic and complex empirical systems highlights its role in identifying transmission pathways of novel or neglected pathogens, as an alternative approach to laboratory transmission experiments, and overcoming common data-collection constraints.



2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruaridh A. Clark ◽  
Malcolm Macdonald

AbstractContact networks provide insights on disease spread due to the duration of close proximity interactions. For systems governed by consensus dynamics, network structure is key to optimising the spread of information. For disease spread over contact networks, the structure would be expected to be similarly influential. However, metrics that are essentially agnostic to the network’s structure, such as weighted degree (strength) centrality and its variants, perform near-optimally in selecting effective spreaders. These degree-based metrics outperform eigenvector centrality, despite disease spread over a network being a random walk process. This paper improves eigenvector-based spreader selection by introducing the non-linear relationship between contact time and the probability of disease transmission into the assessment of network dynamics. This approximation of disease spread dynamics is achieved by altering the Laplacian matrix, which in turn highlights why nodes with a high degree are such influential disease spreaders. From this approach, a trichotomy emerges on the definition of an effective spreader where, for susceptible-infected simulations, eigenvector-based selections can either optimise the initial rate of infection, the average rate of infection, or produce the fastest time to full infection of the network. Simulated and real-world human contact networks are examined, with insights also drawn on the effective adaptation of ant colony contact networks to reduce pathogen spread and protect the queen ant.



2008 ◽  
Vol 8 (3) ◽  
pp. 142-143 ◽  
Author(s):  
Evan Wood ◽  
Julio S Montaner ◽  
Thomas Kerr


2021 ◽  
Vol 3 (2) ◽  
pp. 114-126
Author(s):  
Sudi Mungkasi

We consider a SEIR model for the spread (transmission) of an infectious disease. The model has played an important role due to world pandemic disease spread cases. Our contributions in this paper are three folds. Our first contribution is to provide successive approximation and variational iteration methods to obtain analytical approximate solutions to the SEIR model. Our second contribution is to prove that for solving the SEIR model, the variational iteration and successive approximation methods are identical when we have some particular values of Lagrange multipliers in the variational iteration formulation. Third, we propose a new multistage-analytical method for solving the SEIR model. Computational experiments show that the successive approximation and variational iteration methods are accurate for small size of time domain. In contrast, our proposed multistage-analytical method is successful to solve the SEIR model very accurately for large size of time domain. Furthermore, the order of accuracy of the multistage-analytical method can be made higher simply by taking more number of successive iterations in the multistage evolution.



Sign in / Sign up

Export Citation Format

Share Document